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1. Introduction

Over the past several years, the Building and Fire Research Laboratory at the
National Institute of Standards and Technology (formerly the National Bureau of
Standards), has been developing mathematical models for predicting the environmental
conditions which occur as a fire develops and spreads. These models form a significant
part of the computer program entitled HAZARD I, which has been made available to the
scientific community. Another very significant part of HAZARD I methodology is the
modeling of human egress. Human egress modeling has been implemented in HAZARD
I by means of simulation of actual human movement, invoking psychological theories
and heuristic methodologies to create paths which the humans in the residential building
under consideration would likely have taken. As a matter for research, it was proposed
to consider mathematical models which would find optimal and/or Pareto optimal
(nondominated) paths for human egress in the same situations. These paths may serve as
a valuable reference for the designers of buildings. They have many other functions as
well. For example, in the case of buildings which may have electronic emergency
systems capable of adapting to hazardous conditions and giving the appropriate optimal
egress paths to the occupants of the building, these paths may serve as the basis for the
information delivered by the system.  Finally, optimal paths serve as a standard against
which the heuristically generated paths of HAZARD I may be evaluated and validated.

The research supported by this grant has been rather successful at finding
mathematical models, appropriate solution techniques, coding the techniques, and making
sample applications. In seven different research papers the results of the research have
been documented. Six of these papers have appeared in print, while the seventh is
submitted for publication. The full copies of the papers are included as appendices of this
report, while summaries are presented here for the reader's convenience.

2. Summaries of research papers

[1] "Optimization Models in Fire Egress Analysis for Residential Buildings," in Fire
Safety Science - Proceedings of Third International Symposium, (G. Cox and B.
Langford, Eds.), Elsevier Applied Science, London and New York, 1991, pp. 805-814,
(with M. M. Wiecek and T. Getachew).

Fire hazard analysis models are developed for the study of optimal egress of
individual occupants of a residential building which is involved in a fire. Several
examples of increasing complexity and realism demonstrate the methodology, which is
based on dynamic programming. Finally, there is a multi-attribute risk analysis technique
which may be used to evaluate a proposed building design.



[2] "Multicriteria Decision Making in Fire Egress Analysis,” Preprints of IFAC/IFORS

Workshop on Support Systems for Decision and Negotiation Processes, (R.
Kulikowski, Z. Nahorski, J. Owsinski, and A. Straszak, eds.) Systems Research Institute,

Polish Academy of Sciences, Warsaw, Poland, June 1992, pp. 285-290 (with M. Wiecek).

A multicriteria dynamic approach to fire egress analysis is presented in an
algorithm to generate all nondominated egress paths for all occupants in a building. An
application related to a fire in a North Carolina food processing plant is given.

[3] "An Algorithm for Multiple-Objective Path Optimization with Time Dependent
Links," Proceedings of 10th International Conference on Multiple Criteria Decision
Making, Volume 3, pp. 319- 330, Taipei, Taiwan, July 1992 (with T. Getachew).

A new algorithm for computing all nondominated paths in a network with time
dependent vector cost functions is presented. It is an algorithm capable of handling non
monotone increasing cost functions, which may also be discontinuous. These advances
allow for people-fire interactions such as opening and closing doors and windows. The
paper does not contain proofs, due to limitations on space.

[4] "Approximation in Time Dependent Multiple Objective Path Planning,” Proceedings
of 1992 IEEE International Conference on Systems, Man and Cybernetics, Volume 1, pp.
861-866, Chicago, Illinois, October 1992 (with M. Wiecek).

Here the question of whether a simplified algorithm, based only on constant cost
multiple objective dynamic programming subproblems, can be used successfully to
approximate the time dependent problems. The results show that it is possible to get the
entire nondominated set in some problems with the simplified approach. On the other
hand, it was also shown that, in some cases, certain solutions will be missed, while in
other cases, dominated points will be found.

[5] "Transient Behavior in Multiple Criteria Path Planning Problems," Proceedings of
1992 IEEE International Conference on Systems, Man and Cybernetics, Volume 1, pp.
867-873, Chicago, Illinois, October 1992 (with T. Getachew).

In this paper the algorithm of [3] is applied to study the behavior of the set of all
nondominated paths, as the egress starting time is varied for the individual occupants.
This problem is of interest in fire egress analysis, since not all occupants will be alerted at
the same time. Certain patterns can be observed in the nondominated paths set, but no
final conclusion was drawn.



[6] "Time Dependency in Multiple Objective Dynamic Programming," Journal of
Mathematical Analysis and Applications 173, 289-307 (1993) (with M. Wiecek).

This paper contains the algorithms, proofs, and other supporting mathematics for
the applications described in {1] and [2]. It is of interest to those who write computer
programs implementing the research results, as well as those interested in extending the
mathematics to more complex cases.

The paper was accepted without revision for this very prestigious journal.

[7] "Pareto Optimization in Dynamic Networks with Bounded Cost Functions," submitted
for publication (with T. Getachew).

The algorithms, proofs, and other supporting mathematics for the results
described in [3] and [5] are contained in this paper. It seems that the case of bounded
cost functions is very interesting for people-fire interaction modeling. This is because
monotonic increasing cost functions, which are handled by an algorithm of reference [6],
do not always apply to strong people-fire interactions. For example, if a door is closed in
a fire, the monotonic development of the fire may be interrupted. If fire fighting
techniques are applied to a fire, similar things happen. Thus it is of interest to understand
this more general type of cost function. Using the methods developed in this paper, one
may begin to comprehend the most realistic people-fire interactions.

3. Conclusion

The research performed has advanced the state of the art in fire egress analysis ,
which forms an important part of fire hazard analysis and modeling as embodied in
HAZARD L. In doing so, some new mathematical ideas, algorithms and theories have
also been advanced. It is particularly satisfying to have new mathematics derived in
support of such an important national priority as fire safety, and, as the mathematical
knowledge is general, it may be of service to others in the future.



Appendix 1

"Optimization Models in Fire Egress Analysis for Residential Buildings," in Fire Safety
Science - Proceedings of Third International Symposium, (G. Cox and B. Langford,
Eds.), Elsevier Applied Science, London and New York, 1991, pp. 805-814, (with M. M.
Wiecek and T. Getachew).
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ABSTRACT

Fire hazard analysis often includes the use of mathematical models of the egress of the
individual occupants of a structure which is involyed in a fire. In this paper, we introduce
some mathematical optimization models which produce as output at least one path for each
occupant which is optimal with respect to some measurement. Network based models of
increasing levels of complexity and realism are demonstrated by means of a sequence of

examples. These examples include single attribute constant costs, single attribute time-
varying costs, two atribute constant costs, and finally two attribute time-varying costs
imposed on network links. Dynamic programming functional equations which are based on
the principle of optimality are presented. A multi-attribute analysis is proposed to evaluate a

building design with respect to evacuation paths.

KEY WORDS: Egress models, dynamic programming, networks, multiple-objective
optimization.

INTRODUCTION

The mathematical modeling of egress from a building on fire falls into one of two
general categories. The first is primarily descriptive, focusing on the progress of the
occupants over a given time span. The second category has as its focus the determination of
globally optimal trajectories of egress. Its results, useful in establishing benchmarks for actual
evacuation, must draw heavily upon the theory of optimization.

Fairly extensive work has been done on the simulation of egress from a building on
fire. All the models that we have looked at have included one or more of the following
components. i) A network description of the building, ii) a set of heuristics for determining
evacuee decisions, iii) a quantity that the evacuees are interested in minimizing, iv) input from
a separate simulation that keeps track of the progress of the fire and v) an algorithm. Berlin,
Dutt and Gupta [1] simulate emergency evacuation under different combinations of rescue and
egress options. The required input is a set of descriptors for ravel distances between various
nodes in the building. As output this model gives measures of escape route congestion, the
proportion of safe residents within a given time interval and the estimated evacuation time.
Stahl [2] considers the effects of resident ambulatory capacities on safe egress. In EXITT,
(31, [4], occupant capacities are expanded to include age, sex, and sleep; the building
description has provisions for smoke detectors and background noise in addition to node and

FIRE SAFETY SCIENCE—PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM. pp. 805-814



exit information. Occupants, having chosen a course of action, move from one node to the
next according to a shortest-distance algorithm. The output is a description of the decisions
and movements of occupants over time. HAZARD I, {5], (6], incorporates EXITT to
simulate occupant decisions and actions, FAST [7] to perform fire and smoke calculations,
and TENARB, to calculate the impact of toxins on the occupants.

Relatively little work has been done in the determination of globally optimal egress
paths. EVACNET+ [8] is a computer program that determines tme-optimal evacuation plans
of a building. Taking building, occupant, node, travel time as input, it provides statistical
output for quantities such as total evacuation time, number of successful evacuees, periods of
building evacuation etc. It does not however trace the movement of individuals; neither does
it consider people-fire interactions. The purpose of this paper is to address these two
important issues.

Optimal egress involves multiple criteria decisions in a dynamic environment.
Kosweva and Wiecek [9] propose that methods of multple objective optimization and dynamic
progamming may be applied to this problem. In this paper, we demonstrate applications of
methods in optimal routing {10}, and shortest-path algorithms in dynamic network {11] and
multi-objective settings.

The body of this paper is organized into three sections. The main too!l in the first
secton is The Principle of Optimality [12): "An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must consttute an optimal
policy with regard to the state resulting from the first decision”. First it is shown how this
principle, was adapted to networks, via an iterative scheme that successively approximates the
optimal paths from all nodes to a destination node. It is then described how to handle the
time-dependent case. Finally, this is generalized to solve the multi-objective problem, where
it is of interest to optimize more than one quantity. In the Examples section, optimal egress
paths in static and dynamic cost networks are obtained for a simple ranch house. Using this
same building, we determine non-dominated (best') egress paths in the two-attribute case.
The subsequent section applies a multi-attribute graphical analysis to locate high and low risk
zones of the ranch house.

MATHEMATICAL FOUNDATIONS

The mathematical models we consider are simplified versions of a residendal buildin g
which use a superimposed network to represent locations within and around the building,
The network consists of a set of nodes {1,2,...,N} and a set of links which indicate
connections between nodes {(ix' iz),(i3, i ... ). The links have a direction, indicated by the

order of the indices. That is, (3,4) is the link from node 3 to node 4, while (4,3) is the link
from node 4 to node 3. A path from node i0 to node ip is a sequence of arcs P=( (io, il),

(il, i2), (] 1 i ) } in which the initial node of each arc is the same as the terminal arc of
the preceding arc in the sequence and iy, ..., 1 are all distinct nodes. A path represents a

connected curve along the floor of the building.

Each link cammies one or more attributes (i.e. ime to travel, distance to travel, etc.)
which we think of as costs. The costs apply to all occupants. Each occupant in the building
will be initially located at a unique node of the network, denoted an origin node. An egress
path is a set of links from the origin node i, of the occupant to a destination node N, which is

outside the building. That is, the egress path has the form
( (ll ’ 12)!(12’ 13)’(i3, 14)9"‘7(ir7 N)}‘

The mathematical optimization models we use are designed to find, for each occupant,
the egress path (not necessarily unique) which has the minimum cost, or if there are two
attributes, a path which is not dominated by any other available egress path. One path Pis
dominated by another, say P!, if P has the same or higher values in each attribute than the
path P'. If there are several non-dominated paths for a given occupant, it is of interest to
know at least one of them.



Now a dynamic programming approach to finding optimal egress paths in a network
will be described, first for the simplest case and then for the more complex models. Dynamic
programming, as we will apply it, is based on the principle of optimality: A path which is
optimal contains only optimal links. From an intuitive point of view, a path will be proposed
initially, and this path will be improved by discarding links which are not optimal and
choosing links which are optimal among the choices available.

Let the integer N denote the number of the destination node. We wish to compute the
minimum cost path from each node i to N. The costs to travel from node i to node j along
link (i,j) are given and are denoted t;; . If f; is the optimal total cost to go from node i to node

N, then the principle of optimality [ 0] requires that

f; =min(1'=?§ lmk{fJ + 1 } fori=l,.., N-1,
1j) &

fN-_-'O.

One approach is to use successive approximations on the above system of nonlinear
equations to compute an optimal path. This set of equations may be solved as follows:

0 _ P 0 _
Letf,™ = max; 5 fori=1,...N-land fN"'=0.

Then, for k =1,2,3,...
%) — mi (k-1) =
let £, =min _; {fj +Y } fori=l,., N-1,

) a fink

and fN®=0.

Now consider the case of time dependent costs t;, . A type of function which is of

major interest in egress modeling is a step function. If one is coordinating an egress model
with a fire physics model, such as in HAZARD I [6], the time history of smoke developing in
the building is available. For example, if at time t*, node j* becomes impassable due to
intense smoke, then we may model this situation as the step function

. 3 *
Gy if t<t
Gie =

M, if t > t*, and M is a large positive number.
For this type of analysis to apply one must be able to determine, for each optimal path
{q, i1 Yoeews G, is),...} the node j* arrival time Tij . of the occupant with origin node i. There

are two steps:

1) Optimize the network to compute all optimal paths from all nodes i to node N, ignoring the
step function, keeping the constant t;; . Let all paths which pass through j*, have arrival
times '1‘ij . which are less than t*. In this case, the problem is solved and no path needs to be
recomputed.

2) For each link entering the impassable node j*after t*, substitute M for the cost. For other
links entering j*, and for links leaving j*, leave the costs unmodified. Optimize again. The
result will be new optimal paths which avoid the impassable node, if any exist. If there are
none, costs will include terms in M.

The final type of dynamic programming we shall consider is multiple objective
dynamic programming. Two or more armributes may be associated with each link of the
network we are analyzing: time to travel, distance of travel, concentration of toxic chemical on
the link, density of smoke, average temperature on the link, etc. In our model we seek, for
each origin node, paths to the destination node which are non-dominated. In terms of the
principle of optimality, non-dominated paths contain only non-dominated links. Generally,
there will be a set of non-dominated paths for us to compute. Parallel to the treatment above
for the single atwribute case, an equation arises to describe the principle of optimality:




(E}) =vminj$i{ {E;} +y; } fori=1,., N-1,
(i) a link
{(En) =(0Q).

In the above equation, {E;} stands for the set of non-dominated paths from node i to
node N, 3; is the vector of attributes associated with the link from node i to node jand the
symbol 'vmin' stands for vector minimization, or finding the non-dominated paths. Asin the
earlier example, successive approximation may be used to solve these equations. Since the
steps are so similar to the scalar case, they will not be repeated here. The method of dynamic
programming for a similar multiple attribute network problem is discussed in [13).

The most complex model we consider is a multiple attribute network with time
dependent attributes. This is the most relevant to fire egress analysis, yet it has not appeared
in the literature in a useful form. Again the most relevant type of time dependence seems to be
a step function, which can indicate an impassable node. The solution is by dynamic
programming once again; however, it combines two of the methodologies described earlier in
this section: time-dependent analysis and searching for non-dominated paths. The technical
details of the extended form of dynamic programming may be found in [9]. An example to
illustrate the application is contained in the next section.

EXAMPLES

The optimization models presented in the previous section are now applied to analyze
the fire egress in a simple ranch house. Figure 1 depicts the floor plan of the house and nodes
that have been assigned to rooms or secondary locations within rooms. It is assumed that
occupants can be located at the nodes 1,2, . . ., 6, and can leave the house either through the
door in the dining area, door in the living area or window in the bedroom. Thus, an egress
path could be any path leading from node i, (i=1,2,...,6), to the destination node N=7 located
outside the house.

- @ \_J ®DINING
_7_® AREA

& - ©
®

©
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FIGURE 1. Floor plan of a ranch house with arbitrary assignment of nodes.

Figure 2 shows the egress network associated with the house. The number and
direction of links results from assumed evacuation routes and directions between the rooms.




For example, nodes 2 and 3 are connected by two links (2,3) and (3,2) since one can move
back and forth between the bedroom and the hallway, whereas only one link connects nodes 1
and 3 since leaving the bathroom is the only movement of interest between these nodes.

Below we present four cases that iliustrate the modeling concepts and show different
optimal evacuation paths.

Case 1: Single Attribute Network with Constant Costs.

Figure 2 also identifies the travel cost t;; on each link (i,j) in the network. One can
interpret this cost as the (constant) amount of time necessary t0 travel from node i to node j.
Applying the dynamic programming approach, we can find an optimal (fastest) path from each
origin node to the destination node. These optimal paths are depicted in Figure 2 and have
thickened links.

FIGURE 2. Single atribute network with constant costs and fastest paths.

The fastest paths for each origin node i=1,2,...,6 are respectively as follows:
((1,3), (3,9), (5.1},

{(2,3), (3,5, (5D},

{((3.5), (5.1}

(4,5, 5N}
(5.7},
{(6,1}.

Consider now the network given in Figure 2 with another atribute which we can
think of as (constant) distance between the nodes. Figure 4 shows the network with two
attributes, time and distance, assigned to each link. Note that distances (second attribute) on
each link in any pair of bilateral links are equal whereas their respective tmes (first attribute)
do not need to be equal. Now we can find optimal (shortest) path in the network with respect
1o the second attribute only. They are:

{(1,2), 2N}

{21},




((3,2), 2,7},
{(4,5),(5.1},
{(5.D}

{6, N} .

Observe that the shortest paths are not identical with the fastest paths.

Case 2: Single Anribute Network with Time Dependent Costs.

Consider again the network given in Figure 2 and assume that node S is impassable.
According to the analysis in the previous section one should determine the node 5 arrival time
of occupant travelling from some origin node. 7,9, 6, 4 are the arrival times at node 5 while
travelling along the fastest paths from nodes 1, 2, 3, 4 respectively. If node 5 becomes
impassable at time t*=4, then we solve a new fastest path problem with modified costs
substituted for the costs on links (3,5), (4,5) and (6.5). Figure 3 depicts the original network
with node 5 impassable and new optimal paths.

FIGURE 3. Single-attribute network with time dependent costs and new fastest paths.

The new optimal paths that avoid node 5 are:
{(1,3), (3,6), (6,1},

{(273)a (396)s (6’7)} and ((2;7) ] ’ .
(3,6), (6.7)}, ’
((4,3), (3.6), (6,7}, !
(5N}, !
((6,1)}.

We assume that links (5,6) and (5,7) are available only to occupants originally located
atnode 5. Hence the path {(5,7)} is also optimal. Note that links (4,3) and (3,6) became
optimal as a result of the new structure of the network and that there are two optimal (equally
fast) paths from node 2 to node 7 avoiding node 5

I
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Case 3: Two-Atribute Network with Constant Costs.

Figure 4 illustrates also the multiple objective model discussed in the previous section
if both attributes (time and distance) are associated simultaneously with each link of the
nerwork. In this case we look for non-dominated paths for each origin node that we can
generate by applying vector dynamic programming. There are 11 non-dominated paths for all
the origin nodes. We list them below for each origin node i:

((1,2), 2D}, ((1,3), 3.5), 5D}, (1.3, 3.4), (4.5), 5D},

{2.n), {2,3), 3,5, 5.},

2), 2D}, (B4, 4.5), 5.1}, {(3.5), (5.},

FIGURE 4. Two-attribute network with constant costs and non-dominated paths.

Notice that for nodes 1, 2, and 3 additional paths have been discovered by the mulg-
attribute network model. These were not found in the single attribute model solution.

Case 4: Two-Atmribute Network with Time Dependent Costs.

The final case considered includes a two-attribute network and a step function imposed
on node 5 with t¥=4. Figure 5 depicts the network with impassable node 5 and adjusted
costs on links leading to this node.

The vector dynamic programming approach generates 9 non-dominated paths as
follows:

8’?;))’} @), ((1,3), G.6) 6.7,
312), @D}, {(3,6), (6.},
@3), (3.2), @D}, ((43), 3.6), 6D},
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FIGURE 5. Two-attribute network with time dependent costs and non-dominated paths.

Note two new non-dominated links (4,3) and (3,6) that contribute to the new non-
dominated paths in the network. The presence of the very costly links to the impassable node
5 has caused a revision to the set of solution paths.

DISCUSSION AND ANALYSIS

Solving the optimal path problems in the preceeding section resulted in different
solutions that depend on the concept of optimality assumed for each optimization model.

The models were developed for one network whose nodes and links identify all
potential egress routes in the house. Number and location of nodes and links are, of course,
arbitrary but should agree with physical locations of occupants and their movement, location
of decision points (e.g. doorways) and final exit. Developing a network for the house is the
first major phase of the modeling process.

The multi-attribute model allows for simultaneous analysis of several costs that
illustrate the multiple objective nature of the evacuation process. Moreover, given non-
dominated paths by applying a multi-attribute analysis one can obtain a fresh insight into a
building design with respect to the location of a fire.

In order to perform the analysis one can plot non-dominated paths in the two-attribute
space. Figure 6 depicts the all non-dominated paths found in the two-attribute network with
constant costs and time dependent costs. The origin node number assigned to each non-
dominated path helps idendfy the low and high risk zones within the house. The paths
originating at node 2 (of cost (1 1,13) ) and node 1 (of cost (16,6) ) belong to the high risk
zone due to the large values of time and distance to travel. The paths from node 5 and 6 are,
of course, in the lowest risk zone. When node 5 becomes impassable, the path from node 6
stays in the lowest risk zone, but the only two paths leaving node 4 (of cost (11,10) and

12



(17,8) ) are in the high risk zone. Thus, one may conclude that a fire in the dining area of the
house makes the evacuation from the kitchen very difficult.

Assuming that one node at a ime becomes impassable, we can construct muld-
attribute graphs, as in Figure 6, for each node of the network. We can then determine the
high and low risk zones in the house for any location of the fire. Sucha classification could
have a new impact on the design of residential houses in terms of structure, arrangement, and
location of rooms and hallways. Furthermore, occupants' decisions and actions to be taken
during the evacuation could be motivated by the study of the high and low risk zones in the
house.

distance
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FIGURE 6. Costs of non-dominated paths for two-attribute network with constant

costs ( O ) and time dependent costs (X) with origin node numbers.

CONCLUSIONS

A mathematical optimization approach provided by dynamic programming allows us to
simultaneously find optimal egress paths for all occupants in a residential building. Time
varying network atiributes, as well as multiple attributes on each link of a network, may be
handled in the same framework. Decision making in a dynamic environment which includes
conflicting goals more faithfully reflects the situation faced by the occupants of a residential
building which is involved in a fire.

From the optimal solutions we may gain several insights not available in earlier

13



analyses. Revised paths, which may be quite instructive, are obtained. The amount of time
or distance by which the optimal paths increase when a room becomes impassable may be
computed. All non-dominated paths for the building may be plotted in multi-attribute graphs
which allow for classification and a new way to view a building.

The optimization models developed in this paper are of special interest for the Center
for Fire Research (CFR) at the National Institute of Standards and Technology. The dynamic
programming approach relates very well to EXITT {3], [4], and HAZARD I [5], [6],
developed at CFR and so there is a possibility of incorporating this methodology in the
simulation models of CFR.
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Workshop on Support Systems for Decision and Negotiation Processes, (R.

Kulikowski, Z. Nahorski, J. Owsinski, and A. Straszak, eds.) Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland, June 1992, pp. 285-290 (with M. Wiecek).
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Preprints. IFAC/TFORS/AIASA/TIMS Workshop, June 24-26, 1992, Warsaw, Poland

MULTICRITERIA DECISION MAKING IN FIRE EGRESS ANALYSIS

Michael M. Kostreva
Malgorzata M. Wiecek

Department of Mathemarical Sciences
Clemson University
Clemson, SC 29634
U. S A

Abstract: This paper presents a multcriteria dynamic approach to fire egress analysis. An algorithm
for generating all nondominated egress paths for human occupants in a fire building is given. The
approach uses the most recent theoretical developments in time dependent vector dynamic
programming. An interesting application related to a fire in a North Carolina food plant is shown.

Keywords: vector dyramic programming, networks, egress models, multicriteria decision making.

1. Ingoduction

In this research the movements of human occupants of a building who are reacting to the
presence of a fire in the building are considered. Such movement is generally known as egress and
thus the present study is concerned with fire egress analysis. Our work seems 10 be the first to apply
mult-objective programming models to this problem. The motivation to introduce more than one
objective function to be minimized is quite natural in the fire environment. A building fire contains
multiple hazards to be avoided by simultaneously minimizing travel time, distance of travel, amount
of smoke inhaled, amounts of toxins encountered, etc. It is the goal of fire egress analysis to find all
nondominated paths for each such occupant and then to make further study of the paths and their
corresponding cost vectars. By obtaining such a detailed solution one obtains a deeper understanding
of the building structure, the occupants and how they might best manage the risk of a fire.

A building fire and the reaction of the occupants o the fire form an inherendy dynamic
phenomenon. As such, the data to be considered in decision mﬁking is comprised of functions of
time which may be derived either from actal fire measurements or from the output of mathematical
models of fire and smoke dynamics. At the Building and Fire Research Laboratory of the National
Institute of Standards and Technology in Gaithersburg, Maryland, research on the physics of fire and
the mathematical modeling of fires in buildings is well established. Recently the Fire Hazards
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Analysis group has published a computer package called HAZARD I, (Bukowski et al., 1989),
which is comprised of two modules. First, a differential equations model of the spread of flames,
chemicals and smoke resulting from a user defined fire in a building is solved by rumerical
integration. Next, a network is superimposed on the floor plan and the occupants behavior is
simulated by a set of heuristc decision rules. The occupants move around in the network until they
find an egress path by which they leave the building. The output data from the first module is
available as input for the simulation of people-fire interaction.

The research of this paper is designed to provide additional insight into the people-fire
interaction within a building, Theoretical foundation for this research work is given by vector
dynamic programming (VDP). Hartey (1985), Corley and Moon ( 1985), and others considered
vector routing problems in networks with constant vector costs on links and presented dynamic
programming (DP) based algorithms for generating the entire set of nondominated (Pareto-optimal)
paths in the network. Cooke and Halsey (1966) were the first who introduced 2 dynamic network
assumning that travel times on links were general functions of time. They developed a DP based
algorithm for finding the set of paths from every node to the destination node with shortest travel
time.

Different applications have given rise 10 conducting research on path planning problems in
dynamic networks. Orda and Rom (1990), motivated by related problems in computer
communication networks, focused on the shortest path problem in the dynamic network with
restricted or unrestricted departure time, and developed algorithms for finding an optimal path
between two single nodes. Kaufman and Smith (1990) were interested in Tansporatation planning in
congested road networks and specified conditions under which one can efficiently find the set of
optimal paths from the origin node 10 every other node in the nerwork. Kosmeva, Wiecek. and
Getachew (1991) applied several network models to fire egress analysis for residential buildin gs.
Kostreva and Wiecek (1991) seem 1o be the first to introduce anetwork with vector time dependent
costs and developed DP based algorithms for finding the set of nondominated paths. In this paper, as
a continuation of the research effort reported above, this new approach will be applied to performing
multicriteria decision making in fire egress analysis,

2. Time Dependent Vector Dynamic Programming

[a1 the dynamic programming literature rwo problem formulations are considered: find all
nondominated paths 1) from each node to the destination node or 2) from the origin node 0 every
other node. The former formulation is based on the backward approach 10 DP while the latter uses the
forward approach. An algorithm based on the forward technique will be presented in this paper and
its applicability 1o fire egress analysis will be demonstrated.
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Consider a general network, not assumed to be acyclic, that consists of N nodes {1, 2, ...,
N} and a set of links (i, j) connecting the nodes. Associated with each link is a vector cost [Cij(t)],
where the cost functions (c;;: R+ R™) are assumed to be positive vector valued functions of time.
Let [c;;(1)]; be the time to ravel from node i to node j, given that travel starts at time ¢ The cost to

traverse a path p between two nodes of the network is defined as [c(p)] = x [cij(t)]. It is assumed
G(jep

that the cost of traveling along a link is a function only of the arrival time at the starting node at the
link. This assumption, referred to as the frozen link model, allows for fixing a link cost not at the
time of leaving the origin node, but later, at the time of arriving at the starting node of the link and,
thus, for updating the link cost according to very recent data about the fire.

Lettime t be a continuous variable, that is t > 0, and let the functons [cij(t)]l take any
positive value. Letnode 1 be the origin node. Assume that the departure time from the origin node is
t=0. Finally an assumpton is introduced which allows the formulation of the principle of optimaliry
for dynamic multiple objective nerworks. The assumption seems 10 be very realistic for any fire
cgress scenario: parta) states that evacuees may not pass each other during evacuation, and part b)
refers to deterioration of evacuation conditions over time.

Assumption For any link (i, j) in the network and all ty, 13 > 0,if t; < 15, then

a) 1y + [yt £ g + [c5(t))y, and

b) [Cij(tl)]r < [cij(tZ)]r forall re {2,.., m}.

Th . Principle of Optimality for D ic Mulriple Obiecrive N. !

Under Assumption a) and b), a nondominated path p, that leaves the origin node at ime t=0and
arrives atnode j attime t;, has the property that for each node i lying on this path, a subpath P1
that leaves the origin node at time t=0 and arrives atnode i attime t;, < Y, is nondominated.

By Bellman's principle of optimality and the Theorem , we establish that for tf > 0 and
>0 -
(G, © = 1..Nj} = VMIN { [GR(E)] + [, n = 1,..N; ],

=23,., N,
(Gadhna=1y=(0},
where [G;"(1")] is the vector cost of nondominated path n leaving the origin node at time t = 0 and
arriving at node j at time t*. Operation VMIN computes vector costs of nondominated paths in the set
whose each element is a vector sum of the vector cost of the nondominated path n leaving the origin
node at ime O and amriving at node i at time ™, and the cost vector of link (i, j) with the arrival time
t? at node i. For details about the computation see Kostreva and Wiecek (1991).
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3. Application

The following is an illustrative example of the type of multi-objective analysis which the new
theoretical dynamic programming development permits,

Figure 1. The plant floor plan and related network.
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Consider that 2 fire occurred at the location of node 8 (in the center of the building) and the
fire spread rapidly toward node 3. At time t = 3, the associated rooms and passageways become
blocked by smoke. Two objectives are considered, travel time and distance of ravel. Nodes 12A
and 12B represent the same outside location. Assume constant vector costs on the following links:
C1g=(2,2),C1=(3,2), Cpg = (1, 1) C34 = (1, 1), C36 = (3, 2), €37 = (2, 2), €3 195 = (2, 2),
Cs,124 = (2, 2), €59 = (1, 1), €5 194 = (1, 1), €67 = (1, 1), Cg 19 = (2, 2), &g 19 = (2, 2),
cgy = (1, 1), ¢g 10 =(1, 1), ¢g5 = (1, 1), €93 = (3, 3, 69 19 = (3. 3), ¢10 128 = (% 2, €13 9 = (1, 1),
and monotone increasing step functions on the links leading to node 3:

2,2),t<3 1, 1),t<3
c13= and cg3=
(10, 15),t 23 (10, 15),t > 3.

Applying the forward approach for every nodei in the network, i =1, ..., 12, we can find
the set of 2ll nondominated paths leaving that node at time t = 0 and arriving at node j, j =1, that is,
we find all nondominated paths from node 1,1 = 1, ..., 11, to the destination node 12.
Nondominated evacuation paths from nodes 1 and 9 are of special interest due to these nodes’
locations. There are two nondominated paths from node 1 to node 12, namely path {(1,3), (3,12A)}
that has the total cost of (4, 5), and path {(1,6), (6,12B)} with the total cost of (5, 4). Path {(9,5),
(5,12A)} is the only nondominated path leading from node 9 to node 12 with the total cost of (2, 2).

From these calculations we do not wish to conclude anything in particular about the North
Carolina fire. It is simply of interest to know about nondorninated evacuation paths in order to
prepare the occupants of a building for any emergency which might arise.

4. Conclusions

In this short paper we have inroduced a dynamic programming application which has two
unusual and important characteristics: multiple criteria on each link of the related network and time
dependent cost functions. A principle of opumality is given which allows the computéﬂon of the set
of all nondominated paths from an origin node to any other node in the network. An illustrative
example related to fire egress analysis has been included in which some costs are time dependent
discontinuous functions. For this example, all nondominated paths are computed leading from two
of the nodes(rooms of a building) to the destination node(outside of the building). The technique
makes an assumpton which is realistic and quite natural for fire egress analysis and thus it is of
general applicability for these problems.
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AN ALGORITHM FOR MULTIPLE-OBJECTIVE PATH OPTIMIZATION WITH
TIME DEPENDENT LINKS

Teodros Getachew
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Abstract.

The applicability of shortest-path algorithms is well known. There have been two
separate extensions of the classical shortest-path problem. The first is an extension
to finding optimal paths in networks whose links have time-dependent costs, while the
second is concerned with the establishment of algorithms to find all non-dominated
paths through a network with vector-valued costs. Recent work has shown that the
adequate analysis of some important problems, characterized by multiple-objectives in
a time-dependent context, requires the formulaticn of models and algorithms that are
capable of capturing bothof these advances.

We present an algorithm that solves the following problem. Let a network whose
links have vector-valued, time-dependent costs be given. Suppose a distinguished
node, called the destination node is selected. Find all non-dominated, paths from all
nodes to the destination node. Apart from satisfying a certain boundedness condition,
the cost functions are not restricted. The algorithm is recursive, finite, and
constructive. It is a backward and forward procedure, operating simultaneously in link-
space and in path-space. No time grid is required. It reduces to Multi-Objective
Dynamic Programming in the case of constant costs. In general however, this does
not hold, as the Principle of Optimality may be violated. We present computational
experience for piecewise linear cost-functions.

Introduction.

The problem of interest is the following: given a set of points, called nodes,
joined by edges, called links, with each link having associated with it a transition
cost function of time, that is, a function that specifies the cost of making the transition
between the node that defines one end of the link to the node that defines the other,
as a function of arrival time ar the inital node of the link; among those continuous, non
self-crossing paths from a given node t6 a specially designated node, called the
destination node, which have the least cost ?

The main source of the difficulty in this problem lies in the fact that whereas
paths have unique costs, links do not. It is to be recalled that in classical Dynamic
Programming, one only considers links whose costs are time-invariant, and in
particular, independent of the paths containing the links. In this, the time-variant
case however, the cost of a link is not only a function of the link itself but also of the
path which contains that the link. Thus a link may have several costs, each
corresponding to a different path which contains it.
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Definition: Let & be a set of functions with domain ﬁ,+u {0} and range ®, +,

bounded above and below on bounded intervals.
Then the link-transition cost functions are given by the range of the function T where:

T B ->F, givenby T((i,j)) = T ij(t) e ¥F.

The cost on a link, as noted above is a function, not only of time, but also of the
paths to which it belongs. Given a particular path, and a particular link on it, the cost
on the link is determined by the time of arrival, via the path, at the initial node of the
link. This is formalized in terms of the arrival function.

Definition: Let ® = {(i.jy), ( iq.igh - k-2 Jgq) o Jgqr. @)} be a

k
path in P; (3). The arrival function &: P(9) x N — R Fis defined recursively on

initial link-nodes as follows:

Suppose & (®,j,_4) has been defined for r < s-1; let (j, js+1) e P.

Q(P’js.,.‘]) = &(Frjs) + g— ]Sj s+1

(Q(®.jg).

Definition: C: & —» T x T x...x T such that,

Ci) = (oM. - . -, &5 (),

k
where each C(i j) e ¥F.
The "path costing” functions T'o and T are defined next:

Defintion: Let

with
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o = min Q(?,ni) and B = max Cl(?,nj) )
(nl rlJ e ®.

Now, let ® € B (9) be of cardinality k.

+ +
Then To: P(9) - &R b R x...x R is defined by

- . - . ke - .
T (P)=c, (i) + Ccy (O Z(cy (Kigq))
where,
- (1,. . (k) . .
Co (giig) =g (igigh - S lignigh):

This is the definition of the forward costing function:

+ .+ +
T:P(9) - R xR x...x®R is defined by, °

T@®) =T O+ (P iq)

k-2(-—)
+ Z(C. .
s=1" Js)s+1

(a(®.jg)) -

Finally, the notion of efficiency is formally stated in terms of the notation given above.

K
Definition: Let ® € lP( )(9). Then,

(k)
[

P e &ff (Po) if and only if the set

(PP e IP(k)(9) and To('d"') < TO(B") and To('(P') # To('tP)} is empty.

k
Similarly, ® € Sff(i()P) if and only if the set

(PP e IP(k)(9) and T(®') < T(®) and T(P') = T(®)} is empty.
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(n-1)

i

(n-1)

Note that Sff(Po) = & ff (P)) and &ff(P) = &ff (P).

The algorithm:
The algorithm that is presented below has the following features:

1) It is a recursive algorithm in which only the information generated in a previous
iteration is used in the execution of a subsequent one;

11) It takes place both in the space of links, in a backward Dynamic Programming
phase, and the space of paths, in a forward integration phase.

lteration lo X

Given a network, with each link having an associated transition cost function as
defined above, the algorithm begins with the initial partition of the set of paths;
namely, the partition consisting of the empty set and the entire set of paths with all

links costed as in To.

Note that this costing yields a unique network, as each link transition cost function
has a unique infimum. What follows then is an application of backward Dynamic
Programming to this network.

Fi) = vMIN (T,(P): P e 11>i1(9)};

(2) - .. 1 1) 1
For' = VMIN (T (F): T, (P) =T (i) + 1o\, i) Fo, J:

o] o]

" - . (r-1) r-1) (r-1)
Foi = VMIN {T (®): T (P) = ¢y (i) + fy, . fo e Tt

(n-1) ) - .. (n-2) (n-2) -2)
For = VMIN {T(P): T () = C (i) + fo, 2, £ % e R ),

. . . . -1
The backward Dynamic Programming stage terminates with the set Fo(ln ).
Let,

_ =(n-1)
Fo,=For .

and

P(R)=(P P ecP(9)and T, (P)eF}.



The true cost of each element whose cost is in the set F,, is now found by the

evaluation, via the costing function T'. If this cost differs from its cost under To, it

is added to the set VOi‘ Let

If\6

else let,

and

(P P e P(F)and T (P)ST(P)and T (P) # T(F)).

i is empty, then

STOP; P(F ) = 6 ff;(P);

Suppose now that lr-1 and ‘U.r have been defined. Then, define

lteration Ir:

The set Sr_:consisting of all subpaths of all the elements of the set U .

“central to the definition of iteration |, is defined next.

Definition: The set Sr of forbidden paths is defined by the equation: '

Sr ={® ® e P(3)such that ® isa subpath of ', P'e *ur} .

This set defines the partition and the costing for iteration Ir.The path-costing

function for the rth iteration is now defined by:

+ + +
Deﬁnition:'[‘r:lP(g)—a’ﬁ, xR x..x® ,

where,
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T (P)=T (P ifPeS,

T (®) otherwise.
Let

SriE P. (3)nS,,

and

k k
Sri P, (9) n Sr'

The backward Dynamic Programming is applied to the set of paths that are in the

complement of the set S ..

Fil) = VMIN (T, (P) : P e IP:(9)' and Pe §;};

Paths of length at least two in the complement of S ;i can take two forms: those all

of whose links but the latest come from the previous vector-minimization, and those

all whose links except the latest come from a set Srj‘ Accordingly, vector-

minimization over sets of paths of cardinality greater than one must involve, not only
paths from the preceding vector-minimization step, but also paths from appropriate
forbidden sets.

2 (1) .. 1 1
(2) _ vMIN(T, (P): T, (P) = f'+ Tyt 1 e B pes)u

F r

{T,(P): T,(P) =Ty (P)+Cy(ij) . e Sjand pe T3}.

-1
The backward Dynamic Programming ends with the evaluation of the set Fr(? ).

(n-1)

B 1‘(n-2) - (n-2)
ri

. (n-2)
=VMIN{{T{('(P):I“,('(P)- ‘i +Co(|,1) , frj e E

F i ,

pe Sy U (T, (P): T(P) =T (P)+ T i), p'e S/ “andpe T,

Let F.

1

- vMIN { FD G gs gy,

i

where
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(S} =T, (P):pe S }.

Letting,

P(F)={p:pe P; and T (P) e F},

the set V ri is defined to be the set of paths whose cost under the costing T‘r differs

from that under T".

Definition: V. ={®. ® e ]P(Fri) and T r(3") <T(®) and I () =T(®)}.

If V.is empty,

STOP; P(F.) = foi(P)

ri
else let,

. Y V.ou. :u =Yy

(r+1)iE ri ri r+1 ~ jzd (r+1)i’

Theoretical Results.

Note: In the sequel, the symbol <# shall stand stand for “‘at most as large as,
vector-wise, but distinct from”.

The following theorems have been established (See [5] for more details).

Theorem 1: The algorithm terminates after a finite number of iterations. Let

P(9) =P(9)\§,

and
Define fo(IPi (9 ) by the condition ® € fo(IPi (9’) if and only if the set
r

r
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{®:%® e P (9) and To(P) £ = T (P)} is empiy.
r

We then have,
Theorem 2: P(E') ') = & f(P, ).
Define the set &ff, (Pr ) by:

Definition: ® e &ff; (Pr ) if and only if the set {P": P e P, (9) and T (®)

<z Tr (®)} is empty.

Theorem 3: P(F;) = ¢ ff, (Pr)'

In the next theorem, the main theoretical result of this dissertation is established:
namely that after a finite number of iterations, the algorithm determines the entire set
of efficient paths, for all possible initial nodes.

Theorem 4: Let the algorithm terminate after t iterations. Then.

P(F) = &1 (P).

A Numerical Example.

The following directed network with node six as the destination node shall be
used to illustrate the algorithm. The first component of the cost vectors represents
transit imes, the second represents distance.

®)

.1 (3,1, ift<2

(6,1), ift>2. (1.2)

(1.1)

(4,3) #
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FS) Z VMIN((B8) . 0.6) , (69) , (L) + (66)= (33) . (9.6) . (69). (7.7)]
£5) 2 VMIN((8,5) . (L) + (5,5)) = (B.5) . (6:6);

FD 2 vMIN(7.4) L G,D) + 24)= (T4, 53));

FO) = VMIN{(4,3) , (1,2) + (1,2))= VMIN{(4.3) , @2.4)= (43), 2.9}
FS) = VMIN{(1,2)) = ((1.2)).

Forward costing shows that,
Vor=V3=Vos=Vos =9

Therefore,

(5)
Foi

& 1,(P)

fort =2,3,4,5.
Thus the algorithm continues for node one only.

We have,
Vo = {(12346) , (123456)};
Uy =Vors
S1 = {(46),(346),(2346),(12346),(56),(456),(3456),
(23456),(123456)};
and

r, (P) = {To(‘d") if® e S1 , and T (®) otherwise}.

PV =2 FY =2

F®) = VMIN ((1.4) + (7.4) ) = (BB

F4) = VMIN ((88) . (1.4).+ (5.9) = {8.8) , 5.O));
R

F,, = VMIN ( 8,8),(9.5), (10.7) , (12,6)]
={(88), 95,107, (126) }.
V,, =@. So, the algorithm terminates.
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The efficient paths from the given node to the destination node are:
Node 1: { (123456), (12346), (13456), (1346) }:

2: { (23456), (2346) };

3: { (3456) , (346) )

4: { (456) , (46) };

5:{ (56) }.
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Abstract - This paper presents a new method for
approximating the set of nondominated paths in a
dynamic network with vector costs that are monotone
increasing step functions of time. The method
includes solving a sequence of constant cost dynamic
programming problems. Some illustrative examples
are provided.

1. INTRODUCTION

The probiem of planning paths in a multiple objective
dynamic network arises in transportation.
telecommunications, fire egress analysis, and many other
areas. Such a network comprehends vector time-dependent
cost functions on links. Although such problems have been
known for some time, recent progress has been substantial [2-
5. 9] with fire egress analysis providing the motivating
application area, and dynamic programming the theoretical
framework. Drawing on classical works such as [1] as well as
newer papers such as [5.6.8] and monographs such as {71, some
extensions of classical dynamic programming have been
developed [3] and applied [2-4], and some algorithms [9]
which are powerful as well as novel have been derived. One
issue which has not been considered is the use of simplified
approximation methods to obtain partial descriptions of the
Pareto optimal paths. In the earlier approaches. all such
paths have been computed, stored and analyzed. Here we
relax this requirement to study methods which may not
compute all such paths and/or may compute paths which are
not Pareto optimal. The requirements of solving large
networks or real-time applications may necessitate such
methods.

In this paper. the cost functions are monotone increasing
step functions on [0, e ), which seem to be very important in
applications. These step functions may be used to model the
‘failure’ of part of the network. For example, in fire egress

This research supported in part by Grant No.. 60NANBOD1023
Building and Fire Research Laboratory. National Institute of
Standards and Technology. Gaithersburg, MD.

analysis when a room is suddenly too full of smoke to be
traversed, one may represent the fullness by assignment of a
large positive number to the travel times, distances, and other
cost functions on links entering the node which represents
the smoky area. Similarly, if a section of highway becomes
blocked because of an accident, a bridge failure or for some
other reason, one may model the blockage by step functions
with a large positive cost. There are many other phenomena
in networks which may be represented by failure of sections
of the network and our analysis is designed to handle a fairly
general case.

The structure of the cost functions mentioned above leads
to the consideration of a new approximation method for
multiple objective path planning. Such structure leads to
potential gains in the speed of computation which is quite
relevant to future applications in which the systems are large
scale. That is, given enough computational power and
efficient algorithms, individuals in hotel fires may be
modeled one by one. and an individual automobile may be
modeled in a traffic situation, rather than considering more
aggregate models in which flows are treated. The situation
we envision is one in which a relatively small number of
links in the network have step function costs, while the
others have constant cOsts.

In the next section we formulate the time dependent
multiple objective path planning problem and introduce the
approximating sequence of constant cost problems. Section
III includes the proposed method and explains reasons for
approximation. Two path planning examples are provided in
section IV. Comparison of the method of approximation
with other algorithms is given in the concluding section.

II. PROBLEM FORMULATION

The mathematical framework we consider is a general
network, not assumed to be acyclic. It consists of a set of
nodes {1.2....N} and a set of links which indicate connections
between nodes, i. €. {(i}.i2).(i3.ig).... }. The links' directions
are indicated by the order of the indices. So, (3.4) is the link
from node 3 to node 4, while (4.3) is the link from node 4 to
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node 3. A path from node i, to node ip is a sequence of links
P={(ig. i1).(1, i2), ... ,(ip_l, ip)} in which the initial node of
each arc is the same as the terminal node of the preceding arc
in the sequence and ig , ... , i, are all distinct nodes. Let IT be
the set of all feasible paths in the network which have the
form {(iy, ip).(ip, i3)(i3. ig)....(is ;. ig)}. where 1<i;, ig <
N.

Each link carries one or more attributes (i.e. time to travel,
distance to travel, etc.) which we think of as cost functions.
The cost (vector) of a link (i,j) applies to all paths which
include link (i.j) The cost functions (Cij: R*-->RM+) are
assumed to be positive vector valued functions of time, and
are not assumed to be continuous. Let [c;(t)] be the vector
cost to travel from node i to node j, given that travel starts at
time t. where [c;;(t)]; is the time to travel between these

nodes. The cost to traverse a path p in IT is defined to be

@] = Z [c;(t)].

@pep

A path in I1 is a nondominated path if there is no other
path p'in IT with [c(p) ] < [c(p) Jand [c(p) ) < [c(P) I
for some r e (1,...m}, where symbol < in the vector
inequality denotes {c(p) ); < [c(p)]; forr=1,.. m.

Letx 2 1, be a positive integer. Suppose that {t},!; .3,
ty ...t} is a given set of times of failure. Then the set of
links L;, will have a step function vector cost with a step at
tfori=1,2,..,x These failure times, link sets and their

corresponding step cost functions are extremely relevant to
the development of the dynamic programming algorithm. On
the remaining links it is assumed (in this structured case)
that the costs are constants.

The approach is similar to that given in Ibaraki [7] which he
calls successive sublimation dynamic programming. It is
more general than Ibaraki's approach because it handles the
time varying cost functions described above and also it
handles two or more objective functions. Specifically, the
problem of finding all nondominated paths from all nodes to
a specified destination node is now considered. Let (P) denote
this problem for the following discussion.

Now we wish to show how 10 use the structure of
problem (P) to build up a finite set of approximating
constant cost networks, for which network routing problems
(P).j=0, L. ... M, may be solved. Let node N be the
destination node. We introduce the following sets defined
fori=1.2...,N-1:

{B;} - the set of all paths in the network from node i to node

N,

(Eff(B;)} - the set of all nondominated paths from node i to
node N for (P),

{E£fO(B;)} - the approximation set to {Eff(B;)}.

{ Eff(Bi)G)} - the set of all nondominated paths from node i to
node N for (P)).

For these constant cost problems a recursive definition is
convenient:

(PO) : The constant cost network routing problem with the
constant costs all set to the lowest value of their step
functions.

(Pi*1) : Modify problem (P) as follows:

i) For each nondominated path in { Eff(Bi)G)}, compare its
arrival time at the initial node of each of its failure links
with that link's failure time. Let {MU} be the set of links
for which arrival at the initial node and passage on the link
occur after the failure time.

ii) Introduce the next higher step function costs on links
in the set (M},

iti) Let {Bfi(j)} be the subset of nondominated paths
{Ef£(B;)} which contain links in {MO}.

Define the accumulation sets of nondominated paths for
(P) as follows:

(E°BYP) = vMIN ([ (EfEBYD) - (BED} ] L

(Ef%@B)0D} )

where (Eff0B,)(V)} = @.

Denote this modified problem by (Pi*1),

(PM) : The constant cost network routing problem with all
constant costs set equal to the highest values of their step
functions.

[II. METHOD OF APPROXIMATION

Next the formal statement of the method of
approximation is presented. All nondominated paths for
problem (P) are of interest. The constant cost routing
problems may be solved by either a forward DP approach [5]
or a backward DP methodology [6].

METHOD QF APPROXIMATION

STEP 1.

Set j=0. Let (Eff%B,)"D} = @ and (M(-D} = &,

STEP 2.

Evaluate the costs for (PJ) introducing the step function
costs on links in {M(j'l)} and set up the constant cost
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network routing problem. Use multiple objective dynamic
programming [5, 6] to solve (P)) by finding [Eff(Bi)G)}.
STEP3.

Ifj=M, goto STEP 3.

Otherwise, for each nondominated path in {Eff(BiG))}.
compare its arrival time at the initial node of each of its
failure links with that link's failure time. If all arrive
earlier than the failure times. then (MO} = @ and (B0} =
@ . Then find the set (Eff°(Bp} = VMIN { (Eff(B)¥) u
(Ef0(B,)U-D} }. STOP.

Otherwise, continue to STEP 4.

STEP 4.

Let {MO)} contain those links for which arrival at the initial
node and passage on the link both occur after the failure time
of the link, and let {Bf-l(j)} be the subset of nondominated
paths {Eff(B;)P} which contain links in {MD}. Find the set
(08P} = VMIN { { (BB} - (BEPYT U
(Ef%B)I D} ).

Set j=j+1 and go to STEP 2.

STEPS.

Find the set {Ef°(B)} = VMIN { (EffB)™} U

(Ee0B)M-Dy ). STOP.

The problem considered here has been solved exactly in
terms of dynamic programming in [3] and by a recursive
algorithm in [9]. Each of these approaches requires more
computation than the method of approximation above. Only
fixed dimension, constant cost dynamic programming
subproblems are used here unlike earlier approaches which
use time grids, individual node restarts, and forward-
backward recursive features. The present approach was
developed with the motivation that every nondominated path
for problem (P) must be associated with some constant cost
network problem. However, we do not enumerate all such
problems. Hence, the approximation arises.

Although there are some similarities, the method does not
utilize the successive sublimation concept [7] because states
are not explicitly eliminated. The approximating
subproblems are solved by repeated application of the VMIN
operation which removes dominated states during the
solution of each (Pj). Tbaraki's (single objective) successive
sublimation dynamic programming works by changing the
state space. whereas our state space remains the same over all

(Pj) subproblems. [n contrast, our objective function changes

as we move from one subproblem (Pj) to its successor, while
Ibaraki's method never alters the objective function.

IV. EXAMPLES

In this section we apply the method of approximation to
two bi-criteria dynamic networks.

The first example, shows that the final solution set
obtained while applying the approximation method does not
always include all nondominated paths of the original
problem. Consider the network depicted in Figure 1 with one
step cost function on link (3.4) of the form:

c34={(3,1],t<2.(62},122}.

Fig. 1

Bi-criteria network with one step function.

Thus x = 1 and L, = (3.4). This network was originally

developed in [9]. The set of all nondominated paths from
node 1 to node 6, includes the following paths

{Eff(B)} = { {(1.2),(23), 3.4, 4.6)}, {(1.3), B4), 4.5),
(5.6}, {(1.3).(3:4), 4.6)} },

that are costed [12.7], [6.9], and [8.8], respectively. Now apply
the method of approximation for finding nondominated

paths from node 1 to node 6 only. Solving problem (PO) with
Cay(t) = (3.1] yields the set of nondominated paths

(EfEB) M) = { {(12),23), B34). 4.5). 5.0} (12),
2.3), (3.4), @6)}. {(1.3),(34), (4.5). (5.6} }

costed [7.7], [9.6], and [6.9]. respectively. (M} = {(3.4)}
and (B} = ( {(12). 23), 34, @.5). (5.6)}. {(1.2), 2.3,
(3,4), (4,6)} }. Thus, the first iteration terminates with the
accumulation set of nondominated paths for (P)

(EOB )} = { {(1.3).(34), 4.5).(56)} }.

Problem (Pl) with c3,4() = [6,2] yields the set of
nondominated paths
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(EfEB) D)} = {(12), (2.3). B4). 4.5), (5.6)). {(1.2), C36® = {[5.71,1<5.10.12), 1> 5},

(23). 3.4). 4.6)}. {(13). (3.4). 4,5). (5.6)} } Cs6(t) = {[5.10],t < 5, [12,12],t > 5}.
costed [7.7], [9.6], and [6,9], respectively. Since j = M, we get All other links of the network have constants vector costs
the final accumulation set of nondominated paths as Figure 2 shows. For this network formulate problem (P)
. 0 as follows: let x=2 and the failure times be {t;, t,} = (3, 5}
(EF°B )} = VMIN { (EFB)D) O (BB )= yith the setof links L, = {(3,5), (4.5). (6.5)}. and L, = {3.6).
{1(1.2),(2,3), (34), (4.5). (5.6}, ((1.2), (2.3), 3.4), (5.6)}.
4.6} {(1.3).3.4). 4.5). 5.0} }, Problem (Po) is a constant network routing problem and

. its solution is depicted in Figure 3.
that are costed [10.,8], [12,7], and [6,9)], respectively. Note

that instead of the path {(1,2), (2,3), (3.4), (4.5). (5.6)} of cost
[10,8]. the path {(1.3), (3.4). (4,6)} of cost [8,8] should be in
the accumulation set of problem (P). However, while
solving problem (Po) in the first iteration, the path of cost
[8.8], although it was costed as in problem (P), was
dominated by the path of cost {7,7] and hence eliminated from
the accumulation set. The path of cost [7.7] stayed in the
accumulation set of problem (P), costed as in problem (PO)
but not as in problem (P).

Fig.3  Problem (P®) and its nondominated paths.
The other example presents a bi-criteria dynamic path

planning prqblem for which the approximation methoq ﬁl'ldS The sets { Eff(Bi)(o)} of all nondominated paths from node
all nondominated paths from every node to the destination, .

node. This example was developed in [3] and its complete set ™'~ L ..., 6. include:
of nondominated paths was found applying one of two
algorithms presented there. Those algorithms utilize time
dependent multiple criteria dynamic programming and
generate complete set of nondominated paths for dynamic
networks.

Consider the network depicted in Figure 2

((1.2), 2D} {(1.3), 3.5), (5.7}, {(1.3), (3.4), (4.5),
(5.1},

(2D} {(2.3).(3.5), (5.1},

(3.2). (2N}, {(3:4). 4.5). (5.1}, (3.5, (5.1},
{4.5). (5D}

(6D}

{(6.7)}.

Notice the arrival times of these nondominated paths at
the initial nodes of links (3, 5) and (4, 5) (there is no path
going along link (5, 6), (3, 6), and (6,5) ). There are three
nondominated paths with "late” arrival times, namely: path
{(2.3). (3,5), (5,7)} arriving at node 3 at time 3 and traveling
along link (3, 5), path {(1,3), (3.4), (4,5), (5,7)} arriving at
node 4 at time 4 and traveling along link (4, 5), and path

Fig.2  Bi-criteria network with step cost functions. {(3.4). (4.5), (5.7)} arriving at node 4 at time 3 and traveling
along link (4, 5). Thus, {M©@} = {(3,5), 4, 5)}, and {Bf;©@)
and the step cost functions given as: ={ {(13). G.4). 4.5, 5D} ), {BLD) = { {(23). 3.5),

6D} 1 B} = { {(3.4). (4,5, (51} },and (B£®)} = &
fori=4,5, 6. Then the accumulation sets of nondominated
paths for (P) are given as:

C35(t) = {[6,8], 1 < 3, [10.12]. t > 3}.
C45() = {[4.3].t < 3,[10.10]. t > 3},
Ces5() = {[8.10). t< 3,[10.12], t > 3},
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{((1.2). @D} {(1.3).3.5). 5.1},
{2k

{(3.2). 2N}, {(3.,5). 5. D},
{(4.5). 5.},

{51},

{61}

In this case, problem (P!) with the step function costs on

the links in set {M(o)} is constructed. This new constant cost
routing solution is shown in Figure 4.

Fig.4 Problem (P!) and its nondominated paths.

The sets {Eff(Bi)(l)} of all nondominated paths from node
i,i=1...,6,are:

((1.2). 2.1}, {(1.3). 3.6), (6.1},
{2},

{(3.2). 2,1). {(3.6). (6.1},
{4.3),(3.2). (2N}, {4.3).(3.6). (6.7}
{51},

{6.1).

Observe that the set {M(z)} = @, and according to STEP 3
of the algorithm
(EfO(By} = VMIN { (E££(B)D) U (Ef0BY @) )
for i =1, ..., 6, is as follows:

{(1.2), 2D} {(1.3), 3.6). 6.1}, {(1.3), 3.5), 5Dk
{20k

{(3.2), 2D}, {(3.6). (6.1} {(3.5). (5.1}
{@.5).(5.1},

{(5.1}.

{(6.7)}.

In this case {Eff(B;)} = (EFOB)}.

V. CONCLUSIONS

This paper presents a method of approximation of the set
of nondominated paths in a dynamic multiple criteria
network with specially structured cost functions. The
structure in the form of monotone increasing step functions
makes the dynamic network very attractive for many
applications.

The problem, being in the general class of time dependent
multiple criteria path planning problems, can be consistently
solved by two exact algorithms developed in [3]. In
particular, Algorithm One utilizes a discrete time scale and
finds the set of all nondominated paths form every node to
the destination node in a dynamic multiple criteria network.
Algorithm Two uses forward dynamic programming and
finds the same set for a dynamic muitiple criteria network
with monotone increasing cost functions, after it has been
restarted N-1 times (once from each node).

The solution procedure proposed in this paper is designed
to make use of the special structure of the cost functions and
involves solving a sequence of constant vector cost dynamic
programming problems. No discrete time scale is required as
in Algorithm One. It is not required to use a forward
dynamic programming approach, restarting from each node, as
in Algorithm Two.

The decrease in computation to obtain the set of
nondominated paths may be quite significant. In our
examples section, a seven node. thirteen link problem with
two time dependent objective functions is solved and only
two constant cost path planning problems are required. For
comparison, Algorithm Two requires at least six routing
problems in which the costs are computed during the
iteration rather than in advance. Similarly, Algorithm One
would require much more computational effort due to a time
grid of at least 16 time steps. Thus the advantages of
choosing the approximation method over Algorithm One or
Algorithm Two for the step function costs with x << N are
clearly seen.
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Abstract Multi-stage decision problems find a natural
setting in the context of dynamic programming. An
essential stipulation is that the underlying parameter
space be time-invariant. There are numerous practical
problems in multi-stage decision making, however, which
involve parameters that are time-dependent; more-
over, such dependency may exhibit non-monotonic
or even discontinuous behavior. Imn such cases,
classical Dynamic Programming is not applicable,
as the *Principle of Optimality may fail to hold.

A recursive, constructive algorithm to solve multi-
criteria problems with time dependent cost functions is
presented. This method is a direct generalization of
dynamic programming. Under these assumptions, the set
of efficient decisions is itself a function of time. The
algorithm is used to demonstrate an analysis of the
transient behavior of this set by means of an example
from fire egress modelling.

. INTRODUCTION

Dynamic programming [1] is extended to the multi-
objective, time independent case in {4]. The authors formally
show that the Principle of Optimality can be used to find all
the Parcto-Optimal paths from an origin node to the rest of
the nodcs in a directed network. In [2], it is noted that this
problem is NP-hard, and an empirical investigation of the
bicriterion label-correcting shortest path algorithm is carried
oul.

A theorctical coniribution to the bicriterion shortest
path problem is found in [4], where a two stage solution
procedure is established. An early paper o consider the time-
dependent shortest path problem is [3]. In this paper, the
Principle of Optimality is extended in a straight-forward
manner to the case where the transit times between nodes, a
single critcrion, are time-dependent and integral. Orda and
Rom [10] consider the problem for different delay models.

Manuscript reccived August 1, 1992.
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They also discuss the computational complexity of their
proposed algorithms.

Philpott [11] presents a continous-time linear program
formulation of the problem of finding the minimum-length
path from an origin node to a destination node. Finally, in {8],
Kostreva and Wiecek present two algorithms to solve the
problem of finding all the non-dominated (Pareto-Optimal)
paths from all nodes to a destination node. The first is a
generalization of Cooke and Halsey [3] 10 the multi-objcctive
case. The other generalizes the work of Kaufman and Smith
(6] to the multi-objective context . Both of these algorithms
inherit the restrictions of their single-objective analogues;
the first, the integrality of transit times and cxpanded static
network, and the second, the “no passing allowed” and
monotonicity of costs.

The point of departure for the algorithm to be
proposed in this paper is the observation that the approach of
Cooke and Halsey, (which, because of the generality of the
problems it is able to solve will be the one of interest here),
is not a natural one, in that it attempts 1o solve the problem
entirely by link augumentation; that is, by making the links
the only fundamental repositories of information. This is a
natural setting for the time-invariant case, where the link-
cost pair is a well defined entity. In the time dependent
setting however, it is evident that trying to preserve this
well-definition is too costly, in terms of computational
tractability.

The entity that enjoys well definition in the time
variant case is the path-cost pair. However, searching for the
solution entirely in the set of paths is equivalent to
exhaustive path enumeration.

The algorithm prescnted in this paper is a combination
of the two approaches. Fundamental to this algorithm is the
notion of a partition of the path set; a partition into, a set of
paths that are amenable to search via their links in a backward
dynamic programming procedure, and the complementary set
of paths whose costs are known through a forward 'costing’
procedure. Starting from an initial partition consisting of the
entire set of paths from a given node to the destination node,
this procedure generales a unique sequence of partitions,.

0-7803-0720-8/92 $3.00 ©1992 IEEE
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recursively, each containing a better approximation to the
solution set, until, after a finite number of iterations, the
stopping criterion is attained, and the entire solution set
determined. The formal elaboration of the algorithm
follows.

1. FORMALISMS

Definition 1: Let 7., a set of n distinct points in & 2,
called nodes, and &, a set of ordered pairs of distinct
elements from 7., called links, be given. A directed
network with node set Il and link set L is the set,
g=nud

Definition 2: An element (i,j) of & is referred to as a
directed link from node i to node j.

Definition 3 : A set ® of elements of directed links is said to
be a path from i w0 j, i#j, iff

P ={(i'l )1 (j 1j )!' .. 1(] - vik,1)1( jk_ 'j))'}
P issaid to havel:ardin1ali§' k. k-2 !

Let a distinguished element d of T, called the
destination node be given. Then lPi(9) shall denote the set
of paths ® with initial node i and final node d. The set of ail
such paths, emanating from nodes that are distinct from the
destination node will be referred to simply as paths. This set
is defined by the equation:

= v .
P(9)= ie TA(d) ( B; (3))-

Notation 1: P )(9) shall denote the set of paths in
P i(9) with each path of cardinality at most k.

M

K
Notation 2: P, (9) shall denote the set of paths in B (9)
with each element of cardinality exactly k.

Dcfinition 4: A subset ®' of apath ® € P(Q) saidtobe a
subpath of ® if and only if P’ € P(3).

Definition 5: Let & be a set of functions with domain
R T {0} and range ® 7, bounded above and below on
bounded intcrvals.

The link-transition cost functions are then given by the
range of the function I wherc:
T B —->TF, givenby

T =9 ii(t) e ¥F. (2)

The cost on a link, as noted above is a function, not only of
time, but also of the paths to which it belongs. Given a
particular path, and a particular link on it, the cost on the
link is determined by the time of arrival, via the path, at the
initial node of the link. This is formalized in terms of the

arrival function.

Definition 6: Let ® = {(i,j1 ), (j1 v 2), R

. . . . K '
( ig.2r Jk-1) { .1+ d)} be a path in P;(8). The

arrival fanction & P(9) x N — B T is defined

recursively on initial link-nodes as follows:

a(®,i) = 1% (3)
Suppose (¥ j_4) has been defined for r € s-1; let
(jsv js+1)e P' Then,

cl(? 1js+1) = Q(?rjs)
+g] Sj 5+1(Q(P’js)' (4)
Definition 7: C: B —» ¥ x ¥ x...x T such that,
.. 1
cip = ... P, (5)

ij ij
()

where each Ci i

€ ¥ . The "path costing" functions T ; and

T are defined next

Definition 8: Let

) - (k)
.n) = n c 0]
Co (n|.n]) IEl(niynj) ni nj (6)
where,
I(n;, n j) = (a8}, @)
with
o = min &(®,n;) and B = max Q(?,nj) .
(n.,n.Ye ®.

1
Now, let € P;(3) be of cardinality k. Then
T, P(9) & '« ®¥x.. xR is defined by

—
c

P)= 0 ('rl-|) + Cq (Jk_1vd)+
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k-2

- . .

where

- . . (1),. .

Co (lq'] s) = (C o (lq']s)""l
c{§)iquig)- ©

Definition 9: Forward costing is defined as follows.
F:P(0) » R xR x.. xR is defined by,

T(®) =E)-- (t°) + —c-) (e (®,j })
R Jk_1d k-1
k-2 - '
+sf1(cisis+1(c‘(‘°vls))) . (10)

Finally, the notion of cfficiency is formally stated in terms

of the notation given above.

K
Definition 10: Let ® € lP( )

(k)

(9). Then,

P e &ff i( Po) if and only if the set,

e 7 e PX(9) and T (P) < T, (P) and

T (P) = To(iP)} is empty.

of
Similarly, ® € fo(ki)(P) if and only if the set, {P" P’

¢ P™(@) and T(P) < T(®) and T(P) = T(P))
is empty.

IlI. ALGORITHM

The algorithm that is presented below has the

following features:

1. It is a recursive algorithm in which only the
information generated in a previous iteration is used
in the execution of a subsequent one;

2. It wkes place both in the set of links, in a backward
dynamic programming phase, and the set of paths,
in a forward integration phase.

A. lteration I 0 :

Given a network, with each link having an associated
transition cost function as defined above, the algorithm
begins with the initial partition of the set of paths; namely,
the partition consisting of the empty set and the entire set of
paths with all links costed as in To. Note that this costing
yields a unique network, as each link transition cost function
has a unique infimum. What follows then is an application of
backward dynamic programming to this network. Formally
we have,

1
e v R e R] (K (1)
F) L VMIN [Ty (P): To(®) = Syli) +
1 1
o e fE 02
F(O'i)= VMIN {T J(P): T ,(P) = ?o(i.i) +
-1 -1 -1
g A e F G (13)
oy
Fo(? )=VMIN{I‘O(ZP): To(P) = ?o(i.i) +
) -2 -2
() (0-2)  plre2) ) gy

The backward dynamic programming stage terminates with

the set FE)ni-1 ).
Let,
3 (n-1)
Foi=Foi
and

P(Fy) ={P:®eP(8)and T (P)e Ryl (15)

The true cost of each path whose cost is in the set Fy; is now
found by direct evaluation, as a function of start-ime t° of
journey on this path, via the costing function T. If this cost
differs from its cost under TO, the path is added to the set
Vv 0i Let
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Voi = (. Pe ]P(FOi) and T (®) < T(®P)and

T, () # T(P)}. (16)

If Vy,; is empty, then STOP; P(Fq;) = et (P);

else let,

Ug; = @ 17)
and

Uyj = Vi v Uge (18)

Suppose now that I, _, and U, have been defined.
Then, define iteration I, via the set S .
B. Iteration I .

Definition 11: The set Sr'of forbidden paths is defined by
the equation:

Sr ={ ®. P € P(Q) such that P is a subpath of
P, P'eU I,} .

This set defines the partition and the costing for
itcration Ir‘ The path-costing function for the rth
iteration is now defined by:

Decfinition 12: T r P(Q)-> R T x ﬁ.+x...x ?ﬁ,+ ,
where,

I}(P) = TO(P) ifPegS [ (19)
= T'(®) otherwise. (20)
Let
Sii= Pj(8)nS,,
and
Shi= Pl9InS,.

The backward dynamic programming is applied to the
sct of paths that are in the complement of the set Sr i

Fr(i1)= VMIN (T, (®): ® e IP:(Q), and P e S}

(21)

Paths of length at least two in the complement of

S . can take two forms: those paths all of whose links but

the latest come from the previous vector-minimization, and

those all of whose links except the latest come from a set

S ... Accordingly, vector-minimization over sets of paths

ofr &ardinality greater than one must involve, not only paths

from the preceding vector-minimization step, but also paths
from appropriate forbidden sets.

;
Fr(iz) = VMIN{T, (P):.T, () = f(r,}+ Solini,

’ - M ’
T (®) =Ty(®)+ c (i), P'e

1
Srj and P ¢ Sri}}. (22)

The backward dynamic programming ends with the

evaluation of the set F(r:,-i1 ).
(n-1) ) (n-2)
Fri = VMIN{T, (P): T,(P) = £
+Colip (0B el
PeS, Ul (P): T (P) =T,(P) +
- .. n-
Coll) » P& S “and P e S} (23)
Let
-1
F.=vmin { FV O s (24)
where
{S;}={T (P):PeS . }.
Letting,

P(F)={®P:PcP(9)andT (P)e F;},
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the set Vri is defined to be the set of paths whose cost
under the cosling 1; differs from that under T .

Definition 13: V; = {p: ® e P(F;) and T r(?) <
T(®) and T, (P) «T(®)}.

If V|;is empty, STOP, P(Fri) = foi(P); else let,
= Vv (25)

Uirs1)i i’

= u N
cU’r+1 = i;:du(”‘)" (26)

IV. THEOREMS
Note: In the sequel, the symbol <# shall stand for “at most

as large as, vector-wise, but distinct from”.The following
theorems have been established (see (5] for proofs).

Theorem 1: The algorithm terminates after a finite number of
itcrations.

Let

P(3NS .

and

swg'r)nwi(g)

Definc Sf{{P i(9 ") by the condition:
r

? e Gil(P, (9") if and only if the set
r

(PP e P (g'r) and T (P') < = To(®)}
is cmpty.
n-1 .
Theorem 2: ]P(ff,i ) = (P, (9r)). (27)

Define the set foi( Pr) by:

P e &ff (P, ) if and only if the set

{(P:® < P, (9) and T, (P) <= T (P)}is

empty.

Theorem 3: ]P(lf,i) = foi (P

) (28)

In the next theorem, the main theoretical result of this paper
is stated; namely that after a finite number of iterations, the
algorithm determines the entire set of efficient paths, for all
possible initial nodes.

Theorem 4: Let the algorithm terminate after t iterations.
Then,

P () = Sff(P). (29)

V. APPLICATION

Increasing interest is being shown in recent years in fire
egress analysis [ 7). Our application shows how the algorithm
can be used to generate the data for the analysis of the
transience of efficient paths arising in this important
problem.

Consider the following problem. A fire starts in a
room in a residential building. The occupants of the building,
in attempting to make their way to safety, will continuously
need to make trade-off decisions with respect to possibly
conflicting criteria. These decisions are made against a
background of a continuously evolving environment,
governed by the fire, and their interactions with it. A
question of interest is the determination of optimal egress
paths from all rooms to a place of safety. The abstract setting
for this problem is a network with nodes representing rooms,
and links representing passageways. Each link has associated
with it a vector of time-dependent costs, representing the
various time-variant criteria. The problem of interest then
becomes finding the set of all non-dominated paths from each
node (room) to a destination node. This problem being the
original motivation for the development of the algorithm, it
is solved by a direct application of it.

Consider the typical family home below, (fig. 1). A
fire starts at time t = 0, in the kitchen, and spreads through
the house, impacting the passability of corridors, and the
physiological conditions of the occupants, according to
specific functions of time. The occupants have two aims: a)
to maximize their stay in the house after the fire starts, in
order to give aid to other occupants, (O save their
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belongings, etc. and b) to minimize the risk to their lives
posed by the smoke, the heat and the toxicants created by the
fire. Note that the objective, consisting of two aims that are
in contradiction to one another, requires a multiple objective
formulation to be adequately modelied.

O

®

Fig. 1. The floor plan of a family home.

Key

1 = Living Room 2 = Dining Room

3 = Kitchen 4 = Corridor

5 = Corridor 6 = Corridor

7= Foyer 8 = Children's Bedroom

10 = Guest Bedroom
12 = Safety

9 = Children's Bedroom
11 = Master Bedroom

This example will attempt to consider how the
following question may be addressed: What is the transient
behavior of the-set of efficient paths ? There are three types
of time-variant costs that pertain to a link; they are,

1. Transit time: the time it takes to get from the
initial node to the final node of the link (i,j) ; the
nolation for this is T(i j)(l),

”

Time left till impassability: the time until the link
(i,j) becomes impassable; the notation for this is
Lii,jp -

3. Risk: the amount of risk to human survival that the
particular link (i, j) carrics; the notation for this is

Transit timc across a link is depicted as a function of arrival
time at the initial node of the link, and its final node. Itisa
non-decreasing function, in keeping with the nondecreasing
difficulty of movement with the progress of the fire through

the house. Time to impassibility is also a function of the
arrival time at the initial node of the link, and
its final node. It is a non-increasing function, since the
impassibility of a node increases with time.

L(n R(1)

S

Fig. 2. Instances of the functions T, L and R.

T(t)
/

J

The third function, risk to human well-being, is modelled as
a non-decreasing function of arrival time at the initial node of
a link, and its final node.

In the implementation of the application, these
functions, were approximated by linear interpolation. See [ 5]
for details.

VI. RESULTS

Using the data given in [S], the following paths have
been found to be non-dominated egress paths for at least one

exit start time from among: t° = 0, 10, 20, 30, 40, 50, 60, 70,
80, 90, 150, 300. Table I will be used to identify the various
paths.

The set of efficient paths from a given room to safety
is a function of exit start time. It is of interest to examine
the transient behavior of such a set. Table II depicts this
behavior for the set of paths listed in Table I. An x indicates
that the given path is efficient for the indicated start time,
while an o indicates otherwise.

VII. DISCUSSION

As is evident from the computational results depicted
in Table II, the Pareto set is a function of the exit start-time

t°. For the set of functions R(i.j)(‘) , L(i,j)(t) and T j)(t) in

this problem, all implicitly dependent on the evolution of
the fire-dictated environment, it is apparent that this Pareto

set reaches equilibrium as t® — co. It is of interest to know
the amount of time required to do so in general.

It is noteworthy that transit time is is not included in
the set of objectives to which the vector minimization is
applied. This feature of the algorithm may be exploited to
introduce objectives which may be functions of different
measures of time; see [ 5], application two..

From the computation, one may observe that certain
rooms are only visited by stable, Pareto paths, while others
have Pareto paths which appear, disappear and appear again.
This feature may be used to evaluate the design of a given
building. A more complete analysis would however require
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consideration of the problem of different exit start-times for
different occupants. This would generalize the results of this
paper, obtained under the condition of simultaneous exit
start-times for all occupants, and is left to future research.

TABLEIL
TRANSIENT BEHAVIOR OF THE SET OF PARETO PATHS
FOR THE GIVEN SET OF START-TIMES

Time/| © 10 F-°) 3 L 50 60 7 80 9 {tso |300
TABLEI [Pll':l [} L3 x x [} ) ] L3 X x x x
KEY FOR THE SET OF PARETO PATHS dle L« |+ |« [ o [ oloo 1 s 4= L= L5 42
:::i : o o x x x x ° ° o ° o
Ongm Node Path Symbol 211} o X x X x x x x x x X x
! 1:2:3:5.7:12 {1.1) o SO B s AW B MW BT -
1-2'3-5-8-4-7-12 Lzl [2 4] x -] ] [] o ] ] -} ] Q -] o
1-5-7-12 1‘3] (3.1] x X x x x x x x X x x x
1.5:8-47:12 L4} pate To ettt :
2 2-1-5-7-12 2,1 (3. 4] X X x o X x x x X x x x
2:1:58:47:12 22 i At - v A S S S .
2-3-5-7-12 12.3' [5.1] X x x X x x X x X x x x
2_3-5-8_4.7-12 24 5 2] x x X x x x x x x x x x
3 BT X e B o o
3'2'1-5‘7'12 [3,2‘ 16,31 X x X x X x x X x x x x
3:5:7:12 (331 O o o i i s W B
3‘5'8'4'7'12 [3v4] (8,11 x L X x X X X x x x x X
3_2_].5.8.4.7.‘2 [3'5] 1911 x x X x X x x x x x x x
4 4712 14.1] S s i TN S A B
5 5‘7-]2 [5,1 (102 x X x X X i X x L3 X x x
384712 5.2 A A i A 3 W B I
6 6-5-7-12 6-‘ [H‘\ x x x x x x x x x x x x
6-5-8-4-7-12 6,2 1112 = X X X x x ¥ x x x X x
6:10-5-7-12 (631 T S 08 AT 2 S O Tl .
6-10-5-8-4-7-12 6.4
7 7-12 7,1
8 8-5-7-12 (8,1}
9 9-5-7-12 9.1
9-5-8-4-7-12 9.2
10 10-5-7-12 (10.1] ' o
10.5.8.4-7-12 102 (6] D.E. Kaufman and R. L. Smith, Minimum travel time
10-6-5-7-12 103 paths in  dynamic networks with application to
10-6-5-8-4-7-12 {10.4] intelligent vehicle-highway systems, University of
11 11-6-5-7-12 11.1] Michigan, Transportation Research Institute, IVHS
T16-105-7-12 112l Technical Report-90-11, 1990.
11-6-5-8-4-7-12 {13l [7] M. M. Kostreva, M. M. Wiecek and T. Getachew,
11:6:10.5-8-47:12 114 Optimization models in fire egress analysis for
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1. INTRODUCTION AND PRELIMINARIES

The problem of planning paths in a network structure is important for
many applications. Interest in path planning is strong in transportation,
telecommunications, computer design, and fire hazard analysis. Such a
problem is sometimes called a routing problem, or a shortest path problem.
One of the earliest solutions to the problem was given by Bellman [1].
Under the assumptions of constant travel times on each link, dynamic
programming was applied to compute the path of minimum travel time
through the network, from any node to a given destination node. Bellman
applied the functional equations approach to devise an iterative algorithm
which converges to the solution in at most N —1 steps for a network with
N nodes.

Interest in the problem arose recently from fire hazard analysis [12]. In
particular, it is desired to construct realistic models of the egress of humans
from a residential building which is involved in fire. To add realism to the
models, it was suggested to consider dynamic networks (costs on links are
functions of time) and muiti-objective behavior of humans. It seems clear
that a human, taking a quick look at a scene in a burning building, will not
consider only the time required to travel along a path, but also whether the
path is cluttered with obstructions, whether smoke is present, whether fire
is present, the distance of the path, the sound of someone calling, and so
on. Human integration and automatic consideration of trade-offs are
evident in decisions that they make. Although it is not evident that the
complete data needed to solve a complex model such as will be proposed
is actually available to humans in egress situations, the models are viewed as
idealizations to use for standards or benchmarks. Once the model solutions

0022-247X/93 $5.00
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are known, it is unlikely that humans will be able to do real-time path
planning which is as good as these solutions. Hence, they are considered as
lower bounds on what can be expected in real egress scenarios. If these
lower bound or ideal values represent unsatisfactory outcomes, then
decision makers should be made aware of the potential hazards and take
appropriate remedial actions.

Work on dynamic programming for path planning in networks with
dynamic cost functions has its roots in the paper of Cooke and Haisey [5].
Travel times on links were considered as general functions of time, and a
grid of discrete values of time was superimposed. The functions were to be
evaluated at the arrival time at a node. This type of evaluation is now
known as the “frozen link” model of cost evaluation for dynamic networks
[14]. This dynamic cost approach considers only travel times, and indeed,
cannot comprehend other types of costs such as distances, etc. It will be
shown in this paper how to modify the dynamic programming approach to
include other types of cost functions in a multiple objective dynamic
programming approach to path planning in networks.

Other related research on dynamic programming considering time
dependent parameters includes Sebastian [16] and Li and Haimes [13]
and the recent analysis of Orda and Rom [14]. Sebastian and Li and
Haimes are concerned with discrete dynamical systems and their control
under time varying constraints and parameters. The state equations they
consider are replaced by the network structure in path planning. Hence, the
results do not transfer easily to path planning in networks. Orda and
Rom [14] are more concerned with computational complexity of path
planning and other alternative algorithms under time varying costs. Their
focus is restricted to the construction of a single path from one origin to
a single destination. Hence the complexity results they obtain must be
scaled up accordingly when computing all paths under the time varying
assumption. Two separate objectives are considered, time and distance, but
only one of these objective functions is present in any one model. Bertsekas
and Gallager [2] ask a question (in the exercises) about how to handle a
path planning problem in which one cost on one link increases at a given
time. They suggest that there is a simple modification to an existing
algorithm to handle such a situation. Very recent work by Kaufman and
Smith [11] and Evans et al. [8] suggest that there are economical com-
putational strategies available in the case of specially structured dynamic
programming problems. For path planning, there are similar observations
about structure and how to compute more effectively. Algorithms to
effectively compute time dependent path planning solutions with multipie
objectives will be introduced in this paper, under some assumptions about
the time varying cost structure which are motivated by the applications.
These assumptions are similar to those make by Kaufman and Smith for
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the single objective case. It is interesting to note that these assumptions
arose independently and simultaneously from two separate applications,
transportation planning in congested road networks and fire hazard
analysis. It is quite likely that the assumptions are widely applicable in
many diverse settings.

A new development in dynamic programming theory was presented by
Ibaraki [10], who introduced the concept of congener relaxation and
related technique that he called successive sublimation dynamic program-
ming. The original dynamic programming problem is relaxed and
subsequent sublimations of the relaxation are examined until one of them
is congener to the original problem, which guarantees availability of its
solution. Relationships of this technique to our results are yet unknown.

Multiple objective dynamic programming developed concurrently to
dynamic programming with time varying costs, but more research exists on
the latter topic. Initially, Brown and Strauch [3] considered multiple
objective functions with a latticial order. Daellenbach and De Kluyver [7],
seemed to be unaware of Brown and Strauch, and they showed how to
compute the set of nondominated paths in a network under the ordering
of the nonnegative orthant. The theory behind the computation was not
included in paper [7]. Multiple objective analysis of discrete dynamical
systems is considered by Perevozchikov [15], while papers [6, 9] consider
vector routing problems in networks with constant costs on the links.
Carraway and Morin [4] consider a generalization of dynamic program-
ming, but their work does not handle the time dependent cost structure of
interest. Finally, Li and Haimes [13] consider the discrete dynamical
systems control problem with multiple objectives and time dependent
constraints. Again, the network structure precludes such work from
application to the path planning problem of this paper.

The above discussion of progress to date in dynamic programming with
time varying cost structure and multiple objective functions demonstrates
that many related papers exist, but that evidently none will handle the
object of interest: path planning in networks which comprehends multiple
time varying objective functions. From this brief introduction to the
problem and the existing literature, we now proceed to the formal
framework for our research.

The mathematical framework we consider is a general network, not
assumed to be acyclic. It consists of a set of nodes {1,2,.., N} and a set
of links which indicate connections between nodes, i.., {(i, i5), (i3, is), .
The links’ directions are indicated by the order of the indices. So, (3, 4)is
the link from node 3 to node 4, while (4, 3) is the link from node 4 to
node 3. A path from node i, to node i, is a sequence of links P=
{(igs iy)s (iy, i2)y oy (i,—1,1,)} in which the initial node of each arc is the

same as the terminal node of the preceding arc in the sequence and iy, ..., i,
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are all distinct nodes. Let IT be the set of all feasible paths in the network
which have the form

{(il’i2)7 (i2’ i3)a (i3’ i4), esey (iS—hiS)}’ thre 1<11,15<N

Each link carries one or more attributes (ie., time to travel, distance to
travel, etc.) which we think of as cost functions. The cost (vector) of a link
(i, j) applies to all paths which include link (i, j).- The cost functions
(c;: R » R™™) are assumed to be positive vector valued functions of
time, and are not assumed to be continuous. Let [c;(1)], be the time to
travel from node i to node j, given that travel starts at time z. The cost to
traverse a path p in IT is defined to be

le(p)l= Y [e(D]

(hLj)ep

A path in ITis a nondominated path if there is no other path p' in IT
with [c(p")]1< [c(p)] and [e(p')], < [e(p)], for some re {1, .., m}, where
symbol < in the vector inequality denotes [c(p)], € Le(p)], for
r=1,..,m

The organization of this paper is as follows. Section 2 includes all the
theoretical results developed in the paper. In two subsections, two different
approaches and algorithms to solving time dependent multiple criteria
routing problems are presented. The first applies backward dynamic
programming and solves the routing problem generating all nondominated
paths leading from every node in the network to the destination node. The
second approach solves the routing problem for the set of feasible paths
which lead from the origin node to all other nodes in the network. The
analysis shows how adoption of forward dynamic programming leads to a
new version of the principle of optimality that can deal with a general class
of dynamic multiple objective networks. The relationship between the
forward and backward case is also explored. Examples that apply the two
algorithms are included in Section 3.

2. MuLTIPLE CRITERIA TIME DEPENDENT DynNaMIC
PROGRAMMING ALGORITHMS

21. Backward Dynamic Programming Case

In this section we present an algorithm for computing the set of all non-
dominated paths in the network, as introduced in the previous section. The
algorithm is based on Bellman’s principle of optimality [1]. We generalize
the approach to finding the shortest (fastest) route through a network
developed by Cooke and Halsey [5] to the multiple criteria case.
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Assume a discrete time scale Sy={to, to+1, lo+2, - to+ T}, 1,>0.
Accordingly, assume that all the functions [c;(8))e, 1, /= ,2,.,N, i#]j
k=1, 2, .., m, have positive values for teSy. [c;(1)]; is the travel time
from node i to node j, given that the arrival time at node i is ¢ and it is
assumed to be a positive integer. The number T is taken to be an upper
bound on the total travel time required to go from any node in the
network to node N. For example, max,qic w{lein(to)]1} is an upper
bound. If the nodes are not all connected to node N, then the number T
is only implicitly defined. Since there are only a finite number of paths with
finite cost vectors which are feasible, the value of T exists.

Now we introduce the following sets that are defined for teSr and
i=1,2,.,N—1:

{ E.(t)}—the set of all paths in the network which leave node i at time
te S, and reach node N;

{Ef{(E +(2)) }—the set of all nondominated paths which leave node i at
time t€ S, and reach node N;

{[Ft)]}—the set of vector costs of all nondominated paths in
{Eff(E. (1) };

{E(1)®}—the set of all paths of at most k links, leaving node i at
time ¢ and reaching node N at or before time to+ T, k=2,3, ..

([F(t)®]}—the set of vector costs of all nondominated paths in
{E.(1)**}. Obviously, {Efi(E(1)} < {E«D)}-

According to the frozen link model, we also assume that upon the arrival
time at node i the vector cost of link (i, j) for all j such that (i, j) exists,
is an easily computed constant. Thus, the arrival time at node j is
t+ [cy ()],

Let [o0] and {co} denote the vector and the set of m-component
vectors such that each component is equal to infinity, respectively. Let {0}
denote a set containing the zero vector.

Bellman’s principle of optimatlity [1] has been applied to multiple
objective dynamic programming [3, 7, 97. For completeness we present the
principle of optimatily in the form relevant to the path planning problem
in this paper. Following Cooke and Halsey [5] and Kaufman and
Smith [11], we consider the expanded static multiple objective network in
which the state incorporates the current location in the network (node) at
the current time.

TueoreM 1. (Principle of Optimality for Static Multiple Objective
Networks). A nondominated path p, leaving node i at time t€Sr and
reaching node N at or before time to+ T, has the property that for each node
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j lying on this path, a subpath p,, that leaves node j at time ;€ Sy, t;>1, and
arrives at node N at or before time to+ T, is nondominated.

Proof. By contradiction. Assume to the contrary that p, is dominated
{not nondominated), i.c., there exists path p* leaving node j at time {; and
arriving at node N at or before time o+ I, such that

[e(p*)1<[e(pi)]
and

[c(p*)],<[c(p,)], forsome re{l,.,m}. (1)

Let p, be a subpath that leaves node i at time ¢ and arrives at node j at
time ¢;. Thus we have two paths from node i to node N such that their
total cost is, respectively,

[e(py)]+ [e(p2)]

and

Le(p*)] + Le(pD)):
Applying (1) we get

[e(p*)1+ [e(p)] < [e(p )]+ [c(p2));

which implies that path p=(p2, p,) consisting of subpath p, and p, is
dominated.

By the principle of optimality [1] and Theorem 1, we establish that for
teSr,

{[Fi(t)]} = VMIN{[Cij(t)] + {[F;(t+ [%(‘)]1)]}},
i=1,2,..N—1, (2)

([Fu(n)1} = {0}

where operation VMIN computes vector costs of nondominated paths in
the set being the algebraic sum of the cost vector [¢;(2)] and the set of vec-
tor costs of all nondominated paths that leave node j at time ¢+ [¢ G (D711
Computing all nondominated paths in (Efi(E,(1))} requires applying an
jteration scheme on the system of equations above.

We present now Algorithm One which includes the iterative procedure

and finds {Ef(E, (1)}, i=12 - N—1, in a finite number of steps.
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ALGORITEM ONE.

Step 1. Establish a limited grid of discrete values of time Sr=
{to, to+ 1, tg+ 2, . 1o+ T'}. (Choice of T is discussed above). For teSr
and i, j=1,2, .., N, i# j, compute [c;(?)].

Step 2. Modify the vectors [¢;(2)], 1€ Sy as follows:

[ey(8)] if 4+ [c; (1)1 <t+T

L, j=1,2,.., N, i# ]
[eo] if t+0c;(0]>1+T hij=1 i#]

(3)

(6,07 =

Step 3. Construct an “initial guess” array [ { [F:()9]}1,i=12,..,N,
teSy, where {[Fy(1)®1}={0}, and {[F:()¥1}=[emn)] for i=
,2,.,N—1

Step 4. Calculate the arrays [{[F;()*]}], i=1,2,., N, teSyr, for
k=1,2,3,.. as follows:

{[F()®1}=VMIN{[c;()} + {[F;(1 + [y (DI V1)
i=1,2,.,N—1, (4)

{[FM()®]}={0}.

The VMIN operation in the equation above will lead to {0} if [c;(1)] =
[oo] for all j or if ¢4 [c;(1)] ¢S Otherwise, if both [c;(#)]" and
{[F;(t+[cs(1)1))*~ 1]} are finite for some j, compute {c;(1)]’, extract
{[F;(t+ [cy(1)])“~ ]} from the array [{[F:()®’]1}] and perform the
VMIN operation (over j) of their algebraic sum.

Step 5. The sequence of sets {[Fi(t)*1}, k=1,2,.. converges to
{[F:(t0)1}. The set {Eff(E.(t,))} is obtained by keeping track of the
indices of paths’ links that contribute to {[F;(z,)*’1}.

THEOREM 2. The method of Algorithm One is well-defined.

Proof. We start (step k=0) with all paths and corresponding costs
from node i to node N set equal to the single link costs connecting each
node to N. That is, we start with nondominated paths of one link each.
Each set {[F;(t)®]}+# &, and contains exactly one cost vector. As k
increases, the set {[F,(1)*’]} accumulates the nondominated cost vectors,
while always dropping dominated cost vectors. Hence, {[F:()®1}
remains nonempty for any k. Therefore the VMIN operation may be
applied for any k.
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THEOREM 3. The iterative step of Eq. (4) computes the set of all vector
costs corresponding to all nondominated paths with at most k links
connecting node i to node N with departure time t.

Proof. The proof is by induction on k. Assume that k =1 and define for
teSy:

VMIN over the vector costs of paths in { E,(¢)?’},

{[Fi(t)(l)]}= if {Ei(t)(z)}?ég,
{0} if {E()?®}=0,
i=12.,N-—1,

{[Fu(n?]} = {0}.

If {E;(1)*} =, then the one-link path from node i to node N, leaving
at time 7 reaches node N after time 75+ T, so that [c;(¢)] = [cc]. There
is also no two-link path from node i through node j to node N that reaches
node N by time 75+ T, so that no one-link path leaving node j at time
t+ [c;(2)]; reaches node N by time f,+ 7. Therefore either [c;(7)] =
[eo] or {[Fi(t+ [c;(1)]1) @1} ={c0} and {[F;(1)V]} = {0}

If {E,(1)®} &, then there exists at least one nondominated path of
one or two links leaving node i at time ¢ and reaching node N by time
to+ T. A one-link nondominated path may have been obtained from
initialization and still be nondominated. A two-link nondominated path
leads from node i to node j, and then follows the one-link path from node
j to node N with the arrival time at node j equal to ¢+ [c;(?)]1=
t+ [cz(D)];.

Now assume that the iterative step is valid for k> 1 and we will show
its validity for k + 1. Again define for te S,:

VMIN over the vector costs of paths in { E;(£)*+?},

{[F.(** "]} = if {E()*"?}#g,
{0} i {E(@)*"?}=g,
i=1,2,.,N=1,

{[Fpn)** ]} ={0}.

If {E;(1)**?} =g, then there is no path of at most k+2 links that
leaves node i at time ¢ and reaches node N by time t5+ 7. Therefore
{[Fi(n)**V]}={e}.

If {E;()**?} # &, then there exists at least one nondominated path of
at most k + 2 links leaving node i at time ¢ and reaching node N by time
to+ T. A nondominated path of at most k£ + 1 links leaving node i at time
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t and reaching node N by time f,+ T may have been obtained in the kth
or an earlier iteration of the algorithm. In the k+1 iteration one may
obtain a nondominated path of at most k + 2 links leading from node i to
node j, and then following a path of at most k+ 1 links from node j to
node N, that has been found in the kth or an earlier iteration on the
algorithm.

THEOREM 4. After a finite number of steps Algorithm One generates all
nondominated paths that leave node i,i=1,2, .., N~ 1, at time to and reach
node N.

Proof. By contradiction. Assume that the method generated all non-
dominated paths, that leave node / at time ¢, and reach node W, except one.
Then either the set of nondominated paths is incomplete or it includes at
least one path that is dominated by the missing path. The former implies
that the algorithm missed one nondominated path which contradicts the
fact that each node of the network was visited and all links leading to it
were examined. The latter indicates that the procedure did not identify the
true status of a path, namely dominated. Hence arises a contradiction with
performing the VMIN operation at node i,i=1, 2, .., N~ 1, of the network
and discovering all nondominated paths leaving this node and reaching
node N.

2.2. Forward Dynamic Programming Case

In the dynamic programming literature two problem formulations are
commonly considered. For the multiple objective network there are: (1)
find all nondominated paths from every node in the network to the destina-
tion node, or (2) from the origin node find all nondominated paths to
every node in the network. While the former formulation gave rise to the
development of Algorithm One, the latter will be considered in this section.
The theoretical background of the multiple criteria dynamic network
analysis will now be adapted for the second formulation. We relate the
second formulation to the first as follows: the destination node is still the
main focus. The forward solution is to be obtained with each other node
in the network as the origin, and nondominated paths which reach the
destination node are computed. The extra computations required may be
compensated by other structural simplifications of the forward approach.

In this forward approach, feasible paths are those which start at the
origin node. Assume that time ¢ is a continuous variable, that is, ¢ >0, and
hence allow [c;(¢)], to take any positive value. We normalize so that the
departure time from the origin node is r=0. Finally an assumption is
introduced which allows the formulation of the principle of optimality for
dynamic multiple objective networks.
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Assumption 1. For any link (i j) in the network and all t,,,20, if
t,<1,, then

(ay f+[es(t)]isn+ [c;(t2)]:, and
(0) Ley(r)], < Ley(e2)], for all re {2,..,m}.

We also introduce the following sets defined for j=2,3, .., N, and
vectors defined for >0 and j=2,3,.., N:

{D;}—the set of all paths in the network which leave the origin node
at time ¢ =0 and lead to node j;

{Eff(D,)}—the set of all nondominated paths which leave the origin
node at time ¢ =0 and lead to node j;

{D{®}—the set of all paths of at most k links leaving the origin node
at time ¢ =0 and leading to node j, k=2,3, ..;

[GY(r*)*)]—the vector cost of the nondominated path u in {D{**"},
where ¢ is the arrival time of this path at node j;

{[G*¥]}= {[G,(t)*®], u=1,.., N;}—the set of vectors costs of
all nondominated paths in {D¥*"V}, where N, is the number of the
nondominated paths;

[Gj‘.‘(t")]—the vector cost of the nondominated path u leaving the
origin node at time t=0 and arriving at node j at time t“;

([G1}={[G;(1) ], u=1,.., N;}—the set of vector costs of all
nondominated paths in {Eff(D;)}, where N, is the number of the
nondominated paths.

Obviously, {Eff(D,)} = {D;}-

TuEOREM 5 (Principle of Optimality for Dynamic Multiple Objective
Networks). Under Assumption 1(a) and (b), a nondominated path p, that
leaves the origin node at time t=0 and arrives at node j at time t;, has the
property that for each node i lying on this path, a subpath p,, that leaves
the origin node at time t1=0 and arrives at node i at time t;,t;<1;, is
nondominated.

Proof. By contradiction. Assume to the contrary that p, is dominated
(not nondominated), i.e., there exists path p* that leaves the origin node at
time ¢ and arrives at node i at time ¢* <¢; such that

Le(p*)1< [e(pi)]s
and (5)

[e(p*)], < Le(pi)]. fér some ref{l,..,m}.
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Both paths, p, and p*, leave the origin node at the same time /=0 and
lead to node i. Hence there are two paths from node i to node j such that
one of them leaves node i at time ¢; and arrives at node j at time ¢;, and
the other leaves node i at time ¢* and arrives at node j at time ¢*. Let us
call those paths p, and pJ, respectively. Thus we have two paths from the
origin node to node j such that their total cost is respectively:

(=]

Le(p)]+ [e(p2)I=[ec(p)]+ Z Lew(te)] (6)

(k.l)yep2
k=i

and

l=j

[c(p*) ]+ [c(pH)I=[c(p*)]+ Y [eu(t®)], (7)

(k.l)ep?
k=i

where ¢, and ¢¥ are the arrival times at node k& (k=1 .., /=) on paths p,
and p¥, respectively.
We also have that ¥ <¢,, then by Assumption 1(a)

1+ Les(t®)] <6+ LoD ],

for every link (i, 5) in the network. Applying Assumption 1(a) on every link
(k,7) in path p, and p¥, and substituting arrival times at each node, we
reach node j and get

I=j l=j
4 Y [ewOhi<ti+ Y Lew(td)]ss
(ke py* khepm
k=i =i

which by definition means
1<, (8)

Applying Assumption 1(b) and summing over all links on p, and p¥ we
have

l=j I=j
Z [Ckl(tl’:)]rs Z [ckl(tk)]ra re {29 ---9m}' (9)
(k.li)s_pz‘ (k.les‘_pz

Note that inequalities (5), (8), and (9) lead to

Le(p*)] + [e(pF)] < Le(p)] + Le(p2)s

which implies that path p=(p,, p,) consisting of subpaths p, and p, is
dominated.
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By the principle of optimality [1] and Theorem 5, we establish that for
>0 and t">0:

([G/ ()], £ =1,.., N;} = VMIN{[G3(t")] + [c;(],  n=1,., N},
j=2,3,..N, (10)
{[G{ ()], ¢=1}= {0},

where operation VMIN computes vector costs of nondominated paths in
the set for which each element is a vector sum of the vector cost of the non-
dominated path n leaving the origin node at time 0 and arriving at node
i at time ", and the cost vector of link (i, j) with the arrival time " at node
i. Computing all nondominated paths in {Eff(D;)} requires again applying
an iteration scheme on the system of equations above.

We now present Algorithm Two which includes the iterative procedure
and finds {Eff(D;)}, j=2,3,.., N, in a finite number of steps. {Assume
without loss of generality that node 1 is the origin node.)

ALGORITHM Two.

Step 1. Construct an “initial guess” vector [{[G!”]}],j=1,2,.. N,
where

{[G1} = {0},
{[G®1}=[c,;(0)], Jj=2,3,..N.

Step 2. Calculate the vectors [{[G}""]}], j=1,2,.,N, for k=
1,2, 3, .., as follows:
([G/(1)®], £ =1, .., N;} = VMIN{[G}(t")*~ V]
+[e;(tM)n=1,., N}, j=2,3,., N,
{[G{(#)¥],¢=1}={0}. (11)
The VMIN operation in the equation above will lead to {co} if
[c;(r")]=[oc] for all nondominated paths leading to node i (n=1, .., N,).
Otherwise, if both [c;(¢")] and [G}(¢")*~"] are finite for some non-

dominated path n, then compute their vectors sum for each such path, and
perform the VMIN operation (over i) on the set just obtained.

Step 3. The sequence of sets {[G{"']}, k=1,2,.., converges to
{{G;1}. The set {Eff(D;)} is obtained by keeping track of paths’ links that
contribute to {[G*']}.

_ The proofs of the following theorems are similar to the proofs of
Theorems 2, 3, and 4, and are thus omitted.
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THEOREM 6. The method of Algorithm Two is well defined.

THEOREM 7. The iterative step of Eq. (11) computes the set of all vectors
costs corresponding to all nondominated paths of at most k links connecting
node 1 and node j with departure time t =0.

THEOREM 8. After a finite number of steps Algorithm Two generates all
nondominated paths that leave node 1 at time t =0 and reach all other nodes
Joforj=2,3,., N.

CorOLLARY 1. If [c;()],, L j=1,2,.., N, andi#j,r=1,2,...,m isa
continuous monotone increasing function on [0, ), then Algorithm Two
finds all nondominated paths from the origin node to any other node.

Proof. A continuous monotone increasing function satisfies Assump-
tion 1(a) and (b) and thus the Principle of Optimality for Dynamic
Muitiple Objective Networks holds, and by Theorem 8 all nondominated
paths from the origin node to any other node are generated.

CoROLLARY 2. If [c;(1)]),, j=1,2,., N, andi#j,r=12,..,misa
monotone increasing step function on [0, o), then Algorithm Two finds all
nondominated paths from the origin node to any other node.

Proof. Proof follows the proof of Corollary I since a monotone
increasing step function satisfies Assumption 1(a) and (D).

CorOLLARY 3. If [c;()],, i j=1,2,.., N, andi#j, r=12,..,m,isa
continuous monotone increasing function on [0, o), then all nondominated
paths from node i,i=1,2, .., N—1, starting at time t=0 and leading to the
destination node N may be computed with at most N—1 applications of
Algorithm Two.

CoroLLARY 4. If [c;(1)]),, i j=1,2,.., N, and i#j, r=12.,misa
monotone increasing step function on [0, ), then ull nondominated paths
from node i,i=1,2,..,N—1, starting at time t=0 and leading to the
destination node N may be computed with at most N—1 applications of
Algorithm Two.

As it was mentioned above, computing all nondominated paths from any
node to the destination node is the main interest. Corollaries 3 and 4, that
result immediately from Corollaries 1 and 2 and thus are presented without
proofs, show that the forward approach can be applied to solving that
problem. Although such a method becomes more complex computationally -
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(at most (N—1) Algorithm Two solutions), it is competitive with
Algorithm One, which requires storing and computing a large amount of
data for the expanded static multiple objective network.

3. EXAMPLES

The algorithms presented in the previous section are mow applied to
solve two dynamic routing problems. The notation in each of the
subsections below agrees with symbols previously used in Sections 2.1
and 2.2, respectively. '

3.1. Backward Dynamic Programming Case

We will use Algorithm One to solve a dynamic routing problem with
two criteria (m=2) for the network dipicted in Fig. 1. The example is
related to a somewhat simpler example in Kaufman and Smith [11].
Remarks there indicate that a naive approach will fail on their example.
Similarly, one needs the expanded static network to solve the network.

A grid of discrete values of time S;g= {1, 2, .., 20} for zo=11s established,
and vectors [cy(¢)] for €S, are modified according to Step 2 of the
algorithm, which results in the expanded static network. An initial guess
array [{[F:(1)®]}], i=1,..,4,1€Sy,, is constructed, and the arrays
[{[F()V]}] and [{[F:(1)®]}] are calculated as Step 4 of the algorithm
indicates. Figure 2 shows the initial array and the two subsequent arrays
calculated in Step 4 of the algorithm (each array has 20 rows and 4
columns that are shown in Fig. 2 in a truncated form). [ {[F.(2,)¥]}] is
given by the first row of array [ {[F (1)®]}] and contains vector costs of
all nondominated paths that leave node i, (i=1,.., 4), at time t,=1 and
reach node 4.

The sets {Eff(E,(t,))} of all nondominated paths that leave node i,
i=1,2,3, at time t,=1 are given as

{(1,2), (2,3), (3, )},
{(2,3), (3, 4)},

{3,4)},

(D——

FiG. 1. Two-criteria dynamic network.
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FiG. 2. Algorithm One, Step 4 calculations.

and are obtained by keeping track of the indices of paths’ links that
contribute to [{[F;(2,)*]}]

Observe that because the cost functions are not all monotone increasing

3.2. Forward Dynamic Programming Case

functions of time, it is possible to have total cost behave in a non-
monotonic way. In such a network, one may also experience “passing” by
which one traveling unit overtakes another on a link.

We solve a two-criteria dynamic routing problem presented by the
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network in Fig. 3 and apply Algorithm Two. Cost functions here satisfy
Assumption 1. Therefore, a “no-passing” convention is in effect. For
comparison, the cost functions are chosen as a combination of constant
functions and monotone increasing step functions.
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FiG. 3. Two-criteria dynamic network with step cost functions and its nondominated
paths.

The step cost functions are given as

6 4 8
[8]t<3 [4]t<3 [lo:lt<3
C = Ces

cys(t) = > as() s ss) = s ®
10 10 10
[12]t>3 [10]123 [12:|t>3
[3]t<5 [150]1<5
cilt) = 10 s cselt) = 0
[12]t>5 [lz]zzs

All the other links of the network have constant vector costs, as Fig. 3
shows. We start with an initial guess vector [{[G{®]}],j=1,2,..,7, and
calculate vectors [{{G¥]}],j=1,2, .., 7, according to Step 2 of the algo-
rithm. The vectors [{[G*1}],j=1,2, .. 7, for k=0, 1, .., 4 are shown in
Fig. 4.

The sequence of sets {[G!']} converges to {[G,]} in the second itera-
tion of the algorithm. The sets {Eff(D,)} for j=2,3,..,7, are obtained by
keeping track of paths’ links that contribute to {[G']} and include the
following paths: :

{(1,2)},

{(1,3)},

{(1,3),3,4)},

{(1,3), (3,9},

{(1,3), 3, 6)},

(1,2, 2D} {(L3GSLGEDE {(1L,3)63,6).(67))
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e E I R B
o) I I 6 I
(e LI B (| B
e SR B
e It A S A
e CI N
o B MR EEY

Fig. 4. Algorithm Two, Step 2 calcuations.

Note that this calculation produces the set of nondominated paths from
node 1 to node 7 (destination node) as well as to all other nodes. A similar
computation is required for nodes 2, 3, 4, 5, and 6 to compute all
nondominated paths from these nodes to the destination node. Applying
Algorithm Two for each of these nodes gives the following nondominated
paths:

{2, D}

{32,277} {B.6).67N} {35,657}
{(4,5), (5D}

{57},

{(6,7)}.

4. CONCLUSIONS

This paper presents for the first time a theoretical and algorithmic
development for the problem of path planning in networks including
multiple time dependent costs on the links. Throughout, the goal is to
compute all nondominated paths in an efficient computational procedure.
Applications abound in fire safety science, general transportation, and
telecommunications.
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Our study has produced two distinct algorithms, each one tailored to a
particular class of cost functions. For general costs functions, we extend the
work of Cooke and Halsey [5] to handle multiple objective functions. We
observe that their paper solved only the minimum travel time path plan-
ning problem, so this paper seems to be the first to handle cost functions
other than travel time. This algorithm should be used only when required
(by cost functions which are not monotone increasing) because it has a
greater overhead and computational cost than the other algorithms.

For monotone increasing cost functions satisfying one additional
assumption, a forward dynamic programming algorithm which generalizes
the paper of Kaufman and Smith [11] is presented. Such an algorithm
seems more computationally effective than the one for general cost
functions and it seems to be independent of the time horizon with repect
to its computational complexity. It has the disadvantage that it must be
applied to each origin node independently in order to get a complete set of
nondominated paths.
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1. INTRODUCTION

Ever since its formulation by Bellman [2], Dynamic Programming has
shown itself to be a useful tool in the solution of muilti-stage decision problems.
Over the last few decades, there have been numerous attempts to generalize it,

notably:
1. with regard to the space of objectives,
2. with regard to the dimensionality of the cost vectors, and

3. with regard to the time-dependency of the cost vectors.

As this paper proposes a new addition to this body of knowledge, it will
commence with a review of the historical background of this progression of

generalizations.

In an early paper, Brown and Strauch [4] generalize Dynamic
Programming by allowing the range of objective functions to be a regular
multiplicative lattice. In similar work , Henig [15] investigates the Principle of
Optimality when the objective values are in a partially ordered set. Verdu and
Poor [20] propose an abstract Dynamic Programming model that includes, but
is not restricted to, optimization problems.

Daellenbach and De Kluyver [8] introduce a computational method for the
determination of Pareto Optimal paths with the restriction that the distance from
a given node to the destination node is unique. The method they propose,
emulated in its basic form in many of the papers to follow on the subject, is a
straight-forward extension of the Principle of Optimality to the muitiple objective
context. Corley and Moon [7] consider the same problem as Daellenbach and

Kluyver, and use the same algorithm, with the vector-minimization taking place
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over paths of length k or fewer links, thus allowing for the possibility that a given
node can be the initial node of paths of varying lengths.

An early paper to consider time dependency in Dynamic Programming
is Cooke and Halsey [6]. The case they consider is the routing problem of
finding minimum travel times to a destination, where the transition times
between states are themselves time dependent. This method has been
extended to the multi-criteria case by Kostreva and Wiecek [17]. In a general
survey of shortest-path algorithms, Dreyfus [11] briefly discusses the problem
of finding shortest paths in networks with time-dependent length of arcs. He
proposes a modification of Dijkstra’s [10] algorithm as a method of solution.

Halpern [14] proposes an algorithm to determine the shortest route in a
network with edge transit times that are time-varying, and with limited delay at
nodes. In work related to that of Halpern, Orda and Rom [18] consider the same
problem under numerous waiting models. They discuss the computational
complexity of their proposed algorithms. Brumbaugh and Shier [3] note that the
problem of finding efficient paths in bicriteion networks is, in general,
exponential in the network size, in contrast to the single criterion case for which
polynomial algorithms exist. They carry out an empirical investigation of some
label correcting algorithms devised to solve this problem. Philpott [1 9] attacks a
similar problem using a continuous-time linear programming formulation.

Finally, Kostreva and Wiecek [17] generalize earlier work by Kaufman and
Smith [16] on finding minimum travel time paths in networks with time-varying
transit times. The generalization solves the problem of finding all nondominated
paths from the origin node to all other nodes in the network when the cost
functions on the links satisfy monotonicity and passing is not allowed.

There exist counterexamples to Halpern's and Dreyfus' algorithms for the

solution of the shortest path problem with time dependent costs [12]. These
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algorithms fail because they are “memoryless”’. That is, they have no provision
for recovering subpaths that were discarded because they were nonoptimal
locally, but which nevertheless were part of optimal paths, (optimal paths which
the algorithms , based on link augmentation, no longer may access, their
subpaths having been discarded earlier). Cooke and Halsey's algorithm avoids
this difficulty precisely because it does not discard information; information with
regard to optimal paths emanating from a node, for the given set of start times,
is stored, and accessed as necessary. The shortcomings of the Cooke and
Halsey algorithm lie in its prohibitive demands on memory (time expanded
network), especially in its multi-objective version, and its restriction with regard
to the integrality of the transit times.
The algorithm'that is presented in this paper has the following features:

1. It is recursive,

2. It takes place both in the set of links, ina backward Dynamic

Programming phase, and the set of paths, in a forward evaluation

phase,

3. The algorithm is free from Cooke and Halsey typé restrictions on the

integrality of transit times, and the associated large network,

4. The algorithm requires only boundedness of the cost functions; this

extends the results of Kostreva and Wiecek, whose algorithm required

monotonicity of costs,

5. It reduces to backward multi-objective Dynamic Programming if costs

are constant.

2. A DESCRIPTION OF THE ALGORITHM

Suppose one is given a set of nodes joined by links, with each link having

associated with itself a vector of functions that specifies the cost of making the
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transition across it, functions that are dependent on the arrival time at the initial
node of the link. Find among those continuous, non self-crossing paths from
every node to a designated destination node, all the efficient ones with respect

to the cumulative transition cost vector.

The algorithm commences with a time-invariant network in which each link
has a transition cost, possibly vector-valued, that coincides with the infimum of
the link transition cost function. The set of efficient paths from all nodes to a
destination node is then determined by backward Dynamic Programming. This
ends phase one of the algorithm for the initial iteration.

Phase two begins with the determination of the true costs for all members
of this efficient set. This is done by direct recursive evaluation, as follows. The
time of traversing the initial link of a given path is equal to the value of the
transition time of that link, evaluated at the initial time, which without loss of
generality will be t = 0; assuming the times of arrival at earlier nodes have been
calculated for the first k nodes in a path, the cumulative transition time to the
(k+1)St node is calculated by adding the arrival time at the kth node to the
transition time of the link of which the kth node is the initial and the (k+1 )St the
final one. This latter transition time is calculated by evaluating the transition cost
of this link at t equal to the arrival time at the kth node. The time to traverse the
entire path is thus calculated. The other components of the cumulative cost
vector are calculated in the same manner, using the appropriate transition cost
functions evaluated at the appropriate arrival times. Now, for each efficient path
with start node r, a comparison is made between the (infimum) costs of the
efficient paths calculated in phase one, and the (true) costs calculated at the
beginning of phase two. Consider now the set of paths for which these two costs
are unequal. For all those start nodes for which this set is empty the set of all

efficient paths from the given node to the destination node has been determined.
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It is the set of efficient paths with start node the given node, found at the end of
phase one. Otherwise define, for each start node, the set of avoidance paths to
consist of thase paths for which the infimum cost differs from the actual cost,
together with the set subpaths of these paths that end in the destination node.

Suppose now that the avoidance set has been defined for iterations up to
and including r-1. lteration r is executed as follows: Through backward Dynamic
Programming, determine the efficient set over the (time invariant) infimum costed
network consisting of paths not in the avoidance set defined in iteration r-1. This
is done in the following manner. Suppose all efficient paths that are in the
complement of the avoidance set and have length at most k-1 have been
determined. A non-avoidance path of length k from a given node can arise in two
and only two ways; as a path with an efficient path of length k-1, or a path with a
avoidance path of length k-1. In the first case, the path of length Kk is constructed
by a one-link augmentation of a (k-1)-long efficient path from the just completed
Dynamic Programming stage, and in the second, by a one-link augmentation of
a (k-1)-long avoidance path which has been determined in the previous iteration
of the algorithm. Phase one ends with a vector minimization over the union of
the set of efficient paths just determined with the set of avoidance paths
determined in the previous iteration.

Phase two for this iteration begins with the determination of the true costs |
of the efficient set determined by the vector minimization at the end of phase
one, precisely as in the initial iteration. Again, consider the set of efficient paths
for which the infimum cost differs from the true cost. All those start nodes for
which this set is empty have just had their entire efficient set determined at the
end of phase one of the present iteration. For each node such that these two

costs differ, however, form the new avoidance set: as the union of the set of
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paths whose infimum costs differ from their true costs with the avoidance set
from the previous iteration. Proceed to iteration r+1.

A rigorous development of the algorithm follows in section 3.

3. THEORETICAL DEVELOPMENT

Notation, Definitions and Terminology

The setting for the development of the algorithm is a network.

Definition 1: Let N, a set of n distinct points, called nodes, and L, a set of
ordered pairs of distinct elements from N, called links, be given. A directed
network with node set N and link set L is,

G=(N,L).

Definition 2: An element (i,j) of L is referred to as a directed link from node i to
node j.
Definition 3: A set x of elements of directed links is said to be a path from i to j,
i=j,iff

T = {54 (G gudgh - g i eq) (g D2
7t is said to have cardinality k.

In this paper, we shall only be interested in paths that terminate in a pre-
selected node. The appropriate notation is given below. Let a distinguished
element d of N, called the destination node be given. Then P i(G) shall denote
the set of paths = with initial node i and final node d.

The set of all such paths, emanating from nodes that are distinct from the
destination node, will be defined by the equation:

P(G)= |JR(G)

ieNd}
In the first phase of the algorithm, it is important to isolate those paths

satisfying specific cardinality criteria. Accordingly, some notation is given next.
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k
Notation 1: P(i) (G) shall denote the set of paths in P (G) with each path of

cardinality at most k.
k
Notation 2: P (G) shall denote the set of paths in P (G) with each element of

cardinality exactly k.

Note then that the entirety of paths of length at most k is defined by the
equation
P(k)(G) — U P;(k)(G)
ieN{d}

and the set of all paths of length exactly k by

PHG)= R0

ieN{d}

The concept of a subpath is fundamental , particularly in phase one of the
algorithm, which, through backward Dynamic Programming, constructs paths
from their subpaths, by link augmentation. )
Definition 4: A subset =' of a path © € P(G) is said to be a subpath of r if and only
if @' € P(G). That is, a subpath, in addition to being a subset of a path, must
itself have the destination node as its terminal node.

We next introduce time dependency. The functionality on time is quite
unrestricted: it is not required to satisfy, for instance, continuity or monotonicity
conditions. The only restriction on the functions that define the costs on links is
that they be bounded. Boundedness above is imposed for the global
requirement of finite costing, while boundedness below is a requirement of the
first phase of the algorithm. Moreover, the costs of subpaths do not have to be
separable from the costs of the paths that contain them.

Definition 5: Let F be a set of functions with domain R U {0} and range R+,
bounded above and below on bounded intervals. Then the link-transition cost

functions are given by the range of the function T where T: L — F, given by

() =T eF.
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The cost on a link, as noted above, is a function, not only of time, but
also of the paths to which it belongs. Given a particular path, and a particular
link on it, the cost on the link is determined by the time of arrival, via the path,
at the initial node of the link. This is formalized in terms of the arrival function.
Definition 6: Let = {(i,j DU pd o Gl k2 d ep k-1'd)} be a path in
Pf(G). The arrival function A: P(G) x N — R is defined recursively on initial
link-nodes as follows:

A(m,i) =0;

Suppose A((n,j,. ) has been defined for r < s-1; let ( jg jgp be an
element of x. Then

A(m, j g4q) = Alm, ] o) +T(A(r, § ).

The algorithm is developed in the context of multi-objective criteria where
the cost on a link is a vector function of time, with each component a bounded
function, as defined above. This is formalized in the:

Definition7: C: L > F xF x ... x F such that,

{P)

- (1) (k)
Ci) = (cj (), - . ., ¢jj (1)), where each ¢

1

The backward Dynamic Programming phase and the forward integration

eF, k=1,...,p..

phase use different aspects of the link costs, in order to evaluate the total cost
of a path. In the former, the infima of the link transition cost-functions are used,

while in the latter their actual costs are determined. Accordingly, we next define

the “"path costing” functions I" | and I'.
Definition 8: Let

. K
c(:)(n n)= inf c( ) (t) fork=1,2,...,p,
] tei(n i'"j) n inj

where,

77



() = 8],

with
o =min A(x,N i) and B = max A(w,n j), for
(n Y j) € T.

Now, letre P i(G) be of cardinality k.

+ + + .
ThenT :P(G) >R x R x ...x R isdefined by
k-2 —

T (m) =6 (i )+ G G p@* Z (G Gl gay)):
where,
56,0)= 0 Py

Next is the deﬁniﬁon of the forward costing function:

+ + + )
r PG —»> Rx Rx . . .x R is defined Dby,

MW=d, 008, (Am)* S (Cumlalmi))
1 -1

s=1

Finally, the notion of efficiency (Pareto optimality) is formally stated in

terms of the notation given above.
b () (k) : : -
Definition 9: Let x € P* (G). Then, & € eff ; (P o) if and only if the set {n" =' €

POG)and T () <T (@ and T, (x) = T,(m)} is empty. Similarly, = o) (P) if
and only if the set {n" n' P(k)(G) and I'(x') < T(n) and T(n) = I'(w)} is empty.
Note that eff® ) = eff™" P ) and eff(P) = eff ™ (P).
Initial lteration I
Given a network, with each link having an associated transition cost

function as defined above, the algorithm begins with an initial partition of the set

of paths; namely, the partition consisting of the empty set and the entire set of
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paths with all links costed as in I‘o. Note that this costing yields a unique
network, as each link transition cost function has a unique infimum. What

follows then is an application of backward Dynamic Programming to this

network.
(1) 1
Foi' = VMIN {T" (n)'neP (G)}:
2 1
g)—VMlN{I‘ (m): T (n) Co(l,J)+f() gj) Féj) I
(r) (r-1) (r-1) (f—1)
=VMIN (T (n) r (n) c0 ('1)”0, fOJ eF 0j
n1 n-2) (n-2 n-2
é)i )—VMIN (T (rc) r ('t) c(11)+fgj )fgj ) ng )},
The backward Dynamic Programming stage terminates with the set ng 1). Let

(n 1)
FO' 0| , and

P(Fp={n:me P(G)and T o(1t) e F 4}

The true cost of each element whose cost is in the set P(F Oi) is now found by
the evaluation, via the costing function I'. If this cost differs from its cost under

I o the path is appended to the set VOi' Let
Vg ={m meP(Fy) andI' (m) < [(r)yandT (%) # I['(n)}.
fV g is empty, then STOP;

P(F o= effi(P);
otherwise let

Ug =49

and
Uy, =V g
Suppose now that I, andu have been defined. Then, the i M iteration is

defined as follows.
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lteration I r

The set S _consisting of all subpaths of all the elements of the set u , is
defined as follows.
Definition 10: The set S _ of forbidden paths is defined by the equation:

S ={n:nePQG) such that rt is a subpath of ', @’ € u }.

This set defines the partition and the costing for iteration I . The path-
costing function for the " iteration is now defined by:
Definition 11: T PG) > R x R x ...x R where,

F(n)=T (r)ifne S P I'(r) otherwise.

Let

S i P (G) ~S,, and

St =P*(G)S.. ]
Letting

PF )={mne P'(G) andT () e (F )}
the set V i is defined to be the set of paths whose cost under the costing T"_
differs from that under I
Definition 12: V . = {n: = € P(F yand T (m) < [(r)and I (m) # I'(m)}.

Backward Dynamic Programming is applied to the set of paths that are in
the complement of the set S .. F; =VMIN {T,(2): 7 P(G),and P &8,}. Paths of
length at least two in the complement of S [ can take two forms: those all of
whose links but the latest come from the previous vector-minimization, and
those all whose links except the latest come from a set S 5 Accordingly, vector-
minimization over sets of paths of cardinality greater than one must involve, not
only paths from the preceding vector-minimization step, but also paths from

appropriate forbidden path sets.

1 - 1 1
F = WMIN{T (m): T () = f(,j) *+ 6 () 5 f‘,j) € ng) meS o
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(T (m: T (m) =T (®)+ &), w e Syandt e S _}}.
(n-1)

The backward Dynamic Programming ends with the evaluation of the set Fo

F™ = VMINGL (o): T (x) = f‘“éz’ ro), £ e

(n-2)

Fi g S Ul (0 T @ =T @+ 6.

. veSiiandme S }).
Fa=VMIN{Fi O gs 1),
where
{s ri} ={T r(:r): teS ri}. Now check the stopping criteria.
V. is empty, STOP;
Let P(F ;) = eff i-(P); otherwise let

u(m)iEVriuuﬂ,

u r+1 = Uu(r+l)i N
i=d

Theoretical Results

Notation 3: In the sequel, the notation "< =" will stand for "does not exceed,
vector-wise, but is distinct from".

Theorem 1: The algorithm terminates after a finite number of iterations.
Proof: With each iteration, the sets u ; strictly increase. This, and the fact that

the number of paths in P(G) is finite, yields the desired resuit.
Let

P(G}) = P(G)S ,
Definition 13: Define eff( 2(G.)) by the condition = < eff{ 2(G,)) if and only if the
set

{z:7<P(G,) and T,(w) <= I,()f

is empty. Then we have the following resuit.
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Theorem2: P(F™')=eff (R(G;)).

Proof: (by induction on k, the cardinalty of the path).
Letk =1. Then,

F® =VMIN {I‘,(zr):rreEI(G) and zreS,,};

hence one obtains,

PF) = e (P (G)).

Assume that,

P(Fg"l)) = eV (P i(G;')), 1<k-1<n.

A letne eff(k)(Pi(G,‘)), where & is of cardinality k.
Case 1. n={(ij)} v ML E S 5 Then it fellows that
T(m) = ¢, (i) + To(m),
an element in the set { E:(i,j) +T(m). = € Sg'l}. Since 7 € eff )(P (G,
Since ne eff ‘”(P,.(Gj)), and has cardinality k, & P(FS:)), as desired.
Casell m={Gj)} wn,, 7, &S, Wecaimihatr, e @G, I
not, then there must exist; e P{(G!) such that I’ (7)) =
r (n ) But then, letting ' = {(i,j)} v ~';, weget, ' (7:’) <z T (n) by the
addmvnty ofl“ This is impossible since n € eﬁ(P(k) (G)). Hence, nj €
eﬁ’(Pi(k b (G'y). By hypothesis, it follows that1t.j € P(Fg‘ 1)). Therefore,
I (1) e {c, (i) + Fg“”}. Since = € eP™ (G1), I'(m) e F&D, or
7 PES ).

B. Suppose now that & € P(Ffin'l))\eﬁ’(?gk) (G)).
This implies the existence of a path ' € P(G}) such that I' (n) <# I (o).

Without loss of generality, ©' can be assumed to be an element of
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efflP. (G)). But then, by part A, ='e P(F(:-l)); since n P(Fg"l)) by
hypothesis, I' (z) <= T (x)is impossible, by the definition of FS," .
The theorem follows from parts A and B.
Definition 14: Define the set eff, (P r) by the condition & € eff , (P r) if and only if
the set{n' . n'e P i(G) and T r(1c') <#I i(“)} is empty.
Theorem 3: P(F ) =eff . (P ).
Proof:
A. Let € effP (G ). Note that, efP(G )) c effP (G).
Case |. Suppose n € P(G)). Then, since m e efflP (G )), it is also true
that, = € effP,(G))); this yields, by Theorem 3, that = P(F(:D). Since &t
is an element of effP(G ), and F = VM]N{F(:D U {s }}, we must then
have € P(F ri).
Case ll. Suppose & ¢ P(G)). Then, = € S, by definition, and so must
be in P(F ), since it's in ef(P,(Gp)).
B. Suppose now that = € P(F )\effP (G r)).Then there must exist ' € Py(G),
(WLOG = € effflPy(G)), such that I' (n) <= T (x). We now identify two cases:
Casel n'eS ;. Then, I"r(n') € {s;}; butsince = € P(F), we have, by the
definition of F i that r(1r') <# I' (m) is not possible.
Case ll. Suppose n' ¢ S .. Then, n' € P (G)). Sincen'e effP(G))). we
have, by Theorem 3 that I' (x') & F*Y. But then « & P(F ) makes T (n)
<= T r(n) impossible.
Parts A and B together establish the theorem.
In the next theorem, the main theoretical resuit of this paper is

established; namely that after a finite number of iterations, the algorithm

determines the entire set of efficient paths, for all possible initial nodes.

Theorem 4: Let the algorithm terminate after t iterations. Then,
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P(F i) = eff {(P).
Proof: Let x e eff i(P). Letn ® denote the path tcosted by I .

Casel. Supposew , €u, Note that this implies that T (x ) = I'(z). We

(
distinguish two subcases.

Subcase 1. = ® € P(F ") Here, there is nothing to prove.

Subcase 2. Suppose n ® € P(F &

Since by Theorem 4 it follows that P(F u') =effi(P ), this implies that

Ty & eff (P ). But then there must exist a path «', WLOG in eff (P), such
thatT' (n) <= I'(r). Since ' € P(F u)’ by Theorem 4, and F . is terminal,

r t(7:') =I(x"). We thus have, I'(r') = I‘t(n') <= T t(1:) = ['(x). This is not
possible, since n € eff (P).

Case ll. Supposer ., €u . Again, two subcases arise.

®

Subcase 1. Ty € P(F ;- Here, there is nothing to prove since t is

t
terminal, andso I’ t(ﬂ: (t)) = ['(r).

Subcase 2. Suppose & € P(F ") This implies that there exists n', WLOG
in eff (P, which by Theorem 4 is the same as P(F ﬁ), such that I’ t(7:') <#

r t(1r (t))' But since I’ t(1c t)) <TI(m (t)) = I'(x), ("(t) and © are identical), we
have T’ () s# I'(x). However, the factsthat T’ t(n’) =I'(="), (recall that

n e P(F ), tterminal), and I’ t(11:') <# I'(m) from above, force n ¢ eff (P). This
contradicts the leading assumption.

Now let & € P(F ﬁ)\eff (P). This implies that there exists a path =' € eff (P)
such that I'(z") <= I'(x). This in tumn yields I’ t(1:') <T(z) <= [(x) But since
n € P(F ﬁ), I (w) = I(x), moreover, by Theorem 4, = € ff (P). These two
facts make the inequalities [ (n) <I'(n') <= I'(m) (=T (x) impossible.

The theorem is established.
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A Principle of Optimality

The Principle of Optimality of Classical Dynamic Programming is no longer
directly applicable to the problem of multi-stage decision optimization with time-
dependency, since separability and monotonicity may be violated. There is a
generalization of this principle that pertains to this latter problem, a principle
that in fact specializes to the classical version in the case of time-invariant
parameters. The statement of this generalization requires a rigorous definition
of a partition of a set of paths.

Definition 16: Let (P , I) denote a set of paths P with costs determined

according to the path-costing function I. Let T’ . and T', be two path-costing
functions defined on two subsets P , and P,= P\P  of P. Then, the set

{(P s rH.P 5 Iy 2)} is called a partition of (P, I). .

Definition 17: Let (P’ , ") be a set of paths costed accordingtoI". A path wt €
P’ is said to be P'-nondominated iff it is nondominated with respect to the set of
paths in P' costed according to I

Theorem 5 (Principle of Optimality): Let (P, I') be a given set of paths, as in the
algorithm. Suppose & € P is P-nondominated. Then there exists a unique,

finite set of partitions, {P }={P. . T ), (P, D} P, 2P
1r ) 2r 1k 7T 1(k+1)

and P x < P 2k+1) * and a nonempty set of non-negative integers | o such that

for at leastoneie i o every subpath of T is P ﬁ-nondominated.
Proof: The algorithm, whose proof appears above, also serves as a
constructive proof of this result. An explicit proof follows.
1. Uniqueness: This is established by noting that the initial partition is
uniquely defined, consisting of all paths costed at their infima, and
that subsequent partitions are uniquely determined by the sets F G

which are themselves unique.
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2. Existence: Let n be P-nondominated. Let s be the smallest index for
which = e P(F™Y). Such an index exists by the algorithm and
finiteness. Suppose now that =’ is a subpath of n. If =’ coincided with
n, there’s nothing to prove, since x is, Dy virtue of being in P(Fg"”),

Pls-nondominated. So suppose ' # . Assume now that there exists

a path n” € P such that T (=) < T’ (') and I () = T () is true.

This yields,

It} ofn) < To(mw} U{) = T o(x),

and
I (' wiry = T mn} oy =T 0,

which is a contradiction.
Note that this is a generalization of the classical Principle of Optimality
since in the case of time invariance the set of partitions has cardinality one, and

hence every subpath of a nondominated path must be nondominated.
4. ANUMERICAL EXAMPLE

; ()

(1.1) (1,2

(3,1), if t<2
(6,4), otherwise

Y(1.1),t<5
(5,4), otherwise

(3,4)

Fig. 1 A Network with a Time-Dependent Link
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Initial Iteration

Maximum Path-Length Start Node Path Cost
1 1 — e
2 —_— —_—
3 ——— ——
4 4-6 (4,3)
5 5-6 (1,1)
2 1 14-6 (3,4)+(4,3)=(7,7)
2 ————m ——-
3 34-6 (3,1)+(4,3)=(7,4)
4 4-6 4,3)
4-5-6 (1,2)+(1,1)=(2,3)
5 5-6 (1,1)
3 1 14-6 (7,7)
1-3-4-6 (1,4)+(7,.4)=(8,8)
2 2-3-4-6 (1,1)+(7,4)=(8,5)
3 3-4-6 7.4)
3-4-5-6 (3,1)+(2,3)=(5,4)
4 4-5-6 (2,3)
5 5-6 (1,1
4 1 14-6 (7,7)
1-34-5-6 (1,4)+(5,4)=(6,8)
1-2-3-4-6 (1,1)+(8,5)=(9,8)
2 2-3-4-6 (8.5
2-3-4-5-6 (1,1)+(5,4)=(6,5)
3 3-4-5-6 (5.4)
4 4-5-6 (2,3)
5 5-6 (1,1)
5 1 1-4-6 a.n
1-34-5-6 (6,8)
1-2-3-4-6 (9.6)
1-2-3-4-5-6 (1,1)+(6,5)=(7.,6)
2 2-34-5-6 (6,5)
3 3-4-5-6 (5,4)
4 4-5-6 (2,3)
5 5-6 (1,1
Efficient Path Infimum Cost True Cost
1-3-4-5-6 (6.8) (10,11)
1-2-3-4-5-8 (7.8) (14,12)
2-3-4-5-6 (6.5 (10,8)
3-4-56 (5,4) (5.4)
4-5-6 (2,3) (2.3)
56 (1,1) (1.1)

Since the infimum costs and the true costs of the efficient paths from nodes 3,4 and 5 coincide,
all the efficient paths from these nodes to the destination node have been determined. Since
however this is not the case for the efficient paths from 1 and 2, the avoidance set of paths will
be defined. This consists of these paths and all their subpaths.

Initial avoidance set = {1-2-3-4-5-8,2-3-4-5-6,3-4-5-6,4-5-6,5-6,1-3-4-5-6}

Iteration 2: (Backward Dynamic Programming over the complement of the avoidance set)
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Maximum Path-Length Start Node Path Cost

1 1 —_— —
2 P e
3 a———— ——
4 4-6 (4,3)
2 1 14-6 (3,4)+(4,3)=(7,7)
2 ——————
3 3-4-6 (3,1)+(4,3)=(7.4)
4 4-6 (4,3)
3 1 1-4-6 (7,7)
1-3-4-6 (1,4)+(7,4)=(8,8)
2 2-34-6 (1,1)+(7,4)=(8,5)
3 346 (7.4)
4 4-6 (4,3)
4 1 1-4-6 (7,7)
1-2-34-6 (1,1)+(8,5)=(9,8)
2 2-346 (8,5)
3 346 (7,4)
4 4-6 (4,3)
5 1 14-6 (7,7)
1-2-34-6 (9,6)
2 2-3-4-6 (8,5)
3 3-4-6 (7.4
4 4-6 4,3

Note that the efficient paths from nodes 3 and 4 are of no interest, since the entire set has been
determined in the initial iteration. We now take the vector-minimum of the union of the set of
efficient paths from nodes 1 and 2 and the avoidance set.

VMIN{(7,7),(9,6),(10,11),(14,12)}= {(7,7),(9.6)}; Efficient set = {1-4-6,1-2-3-4-6}
VMIN{(8,5),(10,8)}= (8,5}; Efficient set = {2-3-4-6}

Efficient Path Infimum Cost True Cost
14-6 7.7 (1,7
1-2-3-4-6 (9,6) (12,9)
2-3-4-6 (8,5) (8,5)

The new avoidance path is:

{1-2-3-4-5-6,2-3-4-5-6,3-4-5-6,4-5-6,5-6,1-3-4-5-6,1 -2-3-4-6,2-3-4-6,3-4-6,4-6}

lteration 3:
Maximum Path-Length Start Node Path Cost
1 1 — —_—
2 — —
3 ——
2 1 1-4-6 (3.4)+(4,3)=(7,7)
2 ——e—
3 1 146 {7.7)
1-3-4-6 (1,4)+(7.4)=8.8)
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4 1 1-4-6 (7.7)
5 1 1-4-6 7.7

We now take the vector minimum of the union of the efficient set of paths with the set of
avoidance paths from node 1. This yields:

VMIN {(7.7),(12,9),(14,12),(10,11)} = {(7.7)}; Efficient Path = 1-4-6

Efficient Path Infimum Cost True Cost

1-4-6 a7 .7

So the algorithm halts.

The entire set of efficient paths is: {1-4-6,2-3-4-6,3~4-5-6,4-3-6,5-6}

it should be noted that even though the path 4-5-6 is an efficient path in its own right, it would

have prevented the path 1-4-6 from being manifest (since it dominates the subpath 4-6 of 1-4-6)
had it not been avoided in the backward Dynamic Programming in iterations two and three.

5. FUTURE RESEARCH

This algori_t-hm has been shown to be useful in three applications:
tactically delayed scheduling, fire egress analysis and production control (see * .
Getachew [12]). One direction of further investigation is the extension of the
algorithm to the modeling of tactical delay in the multiple machine case. in
considering this extension, one will be faced with be faced with issues of efficient
implementation. The single machine case was implemented in SMALLTALK [9],
an object-oriented language. Given the requirement in both the first and second
phases of the algorithm, for sets to be searched for given subpaths, it was
natural that the data structures of an object-oriented language (such as array,
bag and dictionary), with exactly this functionality built into them should make
such a language a natural choice. It is clear, however, that with increasing
problem size, this convenience carries a price. In this connection, it is also of
interest to extend the network modeling of tactical delay so that the optima
generated are global.

The algorithm, with its altenating Dynamic Programming and avoidance-
set-definition phases has been conceived and formulated as an iterative, region-

limiting type of algorithm. (It is worth noting that unlike most methods of this type,
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it is guaranteed to converge to the optimal solution in a finite number of
iterations.) Recent work by Getachew and Kostreva [13] suggests that a very
rich application area will be opened by means of this new algorithm, due to its
generality and power.

Finally, the algorithm consists of two phases: a backward Dynamic
Programming phase, and a forward vector-minimization phase. As it proceeds
towards the solution, the time-invariant network of phase one decreases in size
while the avoidance set of phase two increases. as such the burden of
computation shifts from the combinatorial operations of Dynamic Prcgramming to
the lookup and comparison operations of vector minimization. It is of interest to
investigate how, given efficient data structures (for the information handling
required in both phases), ihe complexity of this algorithm (for optimization with
time variant parameters) compares with Dynamic Programming in the time-
invariant case. The conjecture is that, given sufficiently efficient data structures,

the two should be comparable to within a polynomial.
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